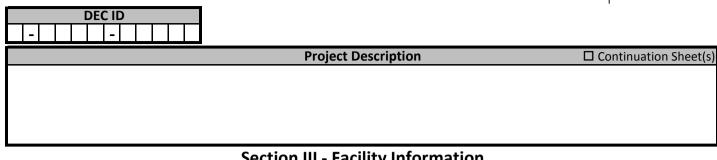
Conservation DEC ID **Application ID Application Type** State Facility × Title V 2 - 6 3 0 1 - 0 0 0 0 6 / 0 0 0 8 3 0 1 - 0 6 0 Section I - Certification Certification certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information required to complete this application, I believe the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations. Vice President, EH&S Venetia A. Lannon Title Responsible Official 4.18.23 Date Signature Profession I certify under penalty of law that I have personally examined, and am milia nation submitted in this document and all its info attachments as they pertain to the practice of engineering. I am awa ubmitting false information, including the possibility tha of fines and imprisonment for knowing violations. NYS License No. 099913 Alexander J. Hoffman Professional Engineer 099913 4/4/2023 Date Signature Chassiq Section II - Identify mation Type of Permit Action Requested Minor Modification **Significant Modification** Administrative Amendment New Renewal × Application involves the construction of new emission unit(s) Application for the construction of a new facility **Facility Information CON ED - ASTORIA FACILITY** Name 31-01 20th Avenue Location Address 11105 Astoria Zip Village City / × Town / **Business Taxpayer ID Owner/Firm Information** Consolidated Edison Company of New York, Inc. Name 4 Irving Place, Room 15-110 Street Address 10003 NY USA New York State/Province Country Zip City × Corporation/Partnership Individual State Municipal Owner Classification: Federal **Owner/Firm Contact Information** 212-460-1223 Femi Ogunsola Phone Name ogunsolaf@coned.com E-mail Address Fax Sr. Engineer Title Affiliation 4 Irving Place, Room 15-112 Street Address State/Province NY 10003 USA New York Zip City Country **Facility Contact Information** 212-460-1223 Femi Ogunsola Phone Name ogunsolaf@coned.com Fax E-mail Address Sr. Engineer Title Affiliation 4 Irving Place, Room 15-112 Street Address 10003 USA City New York NY State/Province Country Zip

NEW YORK


STATE OF

Department of

Environmental

Version 4 - 1/11/2021

					n - racinty m									
Facility Classification														
	🗆 Hospita	al □ R	esidentia	al 🛛 Educatio	nal/Institutional	Commerci	al 🛛 🗆 Industria	ι Οι	Jtility					
Affected States (Title V Applications Only)														
□ Vermont □ Massachusetts □ Rhode Island □ Pennsylvania Tribal Land:														
	New Hampshire Connecticut New Jersey Ohio Tribal Land:													
		SIC Cod	de(s)			NA	ICS Code(s)							
				F	acility Description	on	[Contin	uation Sheet(s)					
				•	ements (Title V /									
-					is in compliance v		-							
					mpliance with all	•••		-	•					
	-			-	nplying units must		-							
	-		-	-	on required. For al	l emission units	at the facility that	t are opei	rating <u>in</u>					
				ments, complete										
	-		-		ned in such a man			he durati	ion of the					
-	-				ompliance plan po	-								
					ements that will b	ecome effective	e during the term	of the pe	rmit, this					
facility w	vill meet suc	h require	ments or	a timely basis.										
🗆 Comp	liance certif	ication re	ports wil	l be submitted at	least once per yea	ar. Each report v	vill certify complia	ince stati	us with respect					
to each a	applicable re	equireme	nt, and tl	ne method used t	o determine the st	atus.								
				Facility App	licable Federal R	Requirements	[Contin	uation Sheet(s)					
Title	Туре	Part	Sub	part Sectio	n Subdivision	Paragraph	Subparagraph	Clause	Subclause					
						-								
				Facility	State Only Requ	irements	[Contin	uation Sheet(s)					
Title	Туре	Part	Sub	part Sectio	n Subdivision	Paragraph	Subparagraph	Clause	Subclause					
								1						

Department of Environmental Conservation

DEC ID												
-					I							

Section III - Facility Information

Facility Applicable Federal Requirements (continuation)												
Title	Туре	Part	Subpart	Section	Subdivision	Paragraph	Subparagraph	Clause	Subclause			

	DEC I	D											
Facility Compliance Certification													
							Rule Citation						
Title	Туре	Part	Sub	part	Secti	ion	Subdivision	Para	agraph	Subparagr	aph	Clause	Subclause
□ Applicab	le Federa	al Require	ement		ning	C	AS Number			Contami	nant N	Name	
□ State On	ıly Requir	rement		🗆 Cap	ping								
							oring Informa						-
니 Work	Practice	Involving	Specific				bient Air Monit •• Activity Des			cord Keepinរួ	g/Mair	ntenance	Procedures
Work Pra		0	1	Proces	s Mate					Referer	nce Te	st Metho	k
Type Co	de	Code			Desci	riptic	n						
Monitored Parameter													
Code Description Manufacturer's Name/Model Number													
		mit				-			Limit Ur				
Upp	er	L	ower	(Code				[Description			
	Avoragi	ing Metho	ad				nitoring Froque	201		Bor	orting	- Poquiro	monte
Code	Averagi	Descrip			Code		nitoring Freque Descrip			Code	JOI LIIIE	g Requirer Descri	
													-
					Faci	lity I	Emissions Sum	nmary	1		Γ	Continu	ation Sheet(s)
CAS Nu	mhor			Cor	ntamina					Potential to			al Emissions
				COI			anic			(tons/y	r)	(p	ounds/yr)
0NY075 ·					PM-								
0NY750 ·					PM-2								
007446 -					Sulfur D								
0NY210 ·					ides of		-						
000630 -					rbon M								
007439 - 92 - 1 Lead (elemental)													
0NY998 ·	- 00 - 0		Тс	otal Volat	tile Orga	anic (Compounds						
0NY100 ·	- 00 - 0			Total Haz	zardous	s Air I	Pollutants						
0NY750 ·	- 00 - 0			Carbon	Dioxide	e Equ	uivalents						

Department of Environmental Conservation

	DEC ID													
-					1									

Section III - Facility Information

Facility Compliance Certification (continuation)													
Rule Citation Title Type Part Subpart Subdivision Paragraph Subparagraph Clause Subclause													
Title	Туре	Part	Subpa	art	Section	Subdivisio	n	Paragraph	Subp	baragraph	Clause	Subclause	
Applicab	le Federal R	equirement		<u> </u>	CA	S No.			Conta	iminant Na	me		
🗆 State On	ly Requirem	nent		Capping									
				N	Ionitorir	ng Informa	atic	n					
Continua	ous Emissior	n Monitoring	g			-		r Control Devi	ce Para	meters as a	Surrogat	e	
🗆 Intermit	ent Emissio	n Testing		Ľ] Work Pra	actice Involv	ing	Specific Opera	ations				
□ Ambient	Ambient Air Monitoring												
					Des	cription							
Work Pra	ctice		Pr	ocess M	aterial				_				
Туре	Co	ode		D	escription				Ret	erence Tes	t Method		
			Paramet	er									
Code				scription	า				Manufa	acturer Nan	ne/Model	No.	
									_				
		Limit							Limit	Units			
	Upper			Lower		Code				Description			
	Averaging	Method			Monitor	ing Frequen			Dr	eporting Re	quiremen	tc	
Code		Description		Code	-	Descript	_	C	ode		Descriptio		
Coue		Description				Descript					2 cochptio	••	
										tion Shee	t of	-	

_ 0T _ Continuation Sheet _

New York State Department of Environmental Conservation

Air Permit Application

DEC ID				I
	Section	IV - Emission Unit	Information	
		Emission Unit Descript		□ Continuation Sheet(s)
Emission Unit				
Building ID	Build	Building Informatio	n Length (ft)	Continuation Sheet(s) Width (ft) Orientation
Dulluling ID	Dulla		Length (it)	Width (it) Otientation
Emission Unit	E	mission Unit Emissions	Summary	□ Continuation Sheet(s)
	1	Cantani		
CAS Number		Contami	inant Name	
	Potenti	al to Emit	Actua	l Emissions
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)
CAS Number		Contami	inant Name	
			-	
ERP (lbs/yr)	Potentia (lbs/hr)	al to Emit (lbs/yr)	Actua (lbs/hr)	l Emissions (Ibs/yr)
		(103/ 91)	(103/117)	(103/ ¥1)
CAS Number		Contami	inant Name	
ERP (lbs/yr)		al to Emit		l Emissions
	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)
CAS Number		Contami	inant Name	
	Dotooti	al to Emit	Actus	Emissions
ERP (lbs/yr)	Potenti (lbs/hr)	al to Emit (lbs/yr)	Actua (lbs/hr)	l Emissions (Ibs/yr)

[DEC ID											
-	-											
					Emiss	ion Poin	t Info	ormatior	ו			Continuation Sheet(s)
Emission Poir	nt											
Ground	Hoig	ht (ft)	Height Ab	ove	Inside D	iameter	E. it	Tamara (⁰ 1	-\	(Cross S	ection
Elevation (ft)) ^{neig}	nt (It)	Structure	cture (ft) (in)		Exit	Temp. (°F	-)	Length (in)		Width (in)	
Exit Velocity (FPS)		Flow CFM)	NYTM (E)	(KM)	NYTM (N) (KM)	E	Building		Distance to Prop Line (ft)	erty	Date of Removal
Emission Poir	nt											
Ground			Height Ab		Inside D	iameter				(Cross S	ection
Elevation (ft)	Heig	ht (ft)	Structure			n)	Exit	Temp. ([°] f	F)	Length (in)	1033 5	Width (in)
	,		onderaie	(10)	(,				2011801 (111)		Widen (my
Exit Velocity (FPS)		Flow CFM)	NYTM (E)	(KM)	NYTM (N) (KM)	E	Building		Distance to Prop Line (ft)	erty	Date of Removal
Emission Poir	x +											
Ground			Hoight Ab	01/0	Incido D	iameter			_		Cross S	oction
Elevation (ft)	Heig	ht (ft)	Height Ab Structure			n)	Exit	Temp. (°f	F)	Length (in)		Width (in)
	,		Judia	(11)	(1)	,				Length (III)		width (iii)
Exit Velocity (FPS)		Flow CFM)	NYTM (E)	(KM)	NYTM (N) (KM)	E	Building		Distance to Prop Line (ft)	erty	Date of Removal
				En	nission S	ource/C	ontro	l Inform	nati	on		Continuation Sheet(s)
Emission So	ource	[Date of	Da	ate of	Date	of	(Con	ntrol Type		Manufacturer's
ID	Туре	Cor	struction	Ор	eration	Remo	val	Code		Description	Na	me/Model Number
Design			Design Ca	apacit	y Units				Wa	aste Feed		Waste Type
Capacity	Code			Descr	iption			Code		Description	Code	e Description
Emission So	ource	[Date of	Da	ate of	Date	of		Con	ntrol Type		Manufacturer's
ID	Туре	Cor	struction	Ор	eration	Remo	val	Code		Description	Na	me/Model Number
Design		<u> </u>	Design Ca	apacit	v Units				Wa	aste Feed		Waste Type
Capacity	Code			-	iption			Code		Description	Code	
Emission So	ource	ſ	Date of	Da	ate of	Date	of		L Con	ntrol Type		Manufacturer's
ID	Туре	4	struction		eration	Remo		Code		Description	Na	me/Model Number
Design		1	Design Ca	apacit	v Units				Wa	aste Feed		Waste Type
Capacity	Code			-	iption			Code		Description	Code	

New York State Department of Environmental Conservation

Air Permit Application

DEC ID				I
	Section	IV - Emission Unit	Information	
		Emission Unit Descript		□ Continuation Sheet(s)
Emission Unit				
Building ID	Build	Building Informatio	n Length (ft)	Continuation Sheet(s) Width (ft) Orientation
Dulluling ID	Dulla		Length (it)	Width (it) Otientation
Emission Unit	E	mission Unit Emissions	Summary	□ Continuation Sheet(s)
	1	Cantani		
CAS Number		Contami	inant Name	
	Potenti	al to Emit	Actua	l Emissions
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)
CAS Number		Contami	inant Name	
ERP (lbs/yr)	Potentia (lbs/hr)	al to Emit (lbs/yr)	Actua (lbs/hr)	l Emissions (Ibs/yr)
		(103/ 91)	(103/117)	(103/ ¥1)
CAS Number		Contami	inant Name	
ERP (lbs/yr)		al to Emit		l Emissions
	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)
CAS Number		Contami	inant Name	
	Dotooti	al to Emit	Actus	Emissions
ERP (lbs/yr)	Potenti (lbs/hr)	al to Emit (lbs/yr)	Actua (lbs/hr)	l Emissions (Ibs/yr)

[DEC ID											
-	-											
					Emiss	ion Poin	t Info	ormatior	ו			Continuation Sheet(s)
Emission Poir	nt											
Ground	Hoig	ht (ft)	Height Ab	ove	Inside D	iameter	E it	Tamara (⁰ 1	-\	(Cross S	ection
Elevation (ft)) ^{neig}	nt (It)	Structure	cture (ft) (in)		Exit	Temp. (°F	-)	Length (in)		Width (in)	
Exit Velocity (FPS)		Flow CFM)	NYTM (E)	(KM)	NYTM (N) (KM)	E	Building		Distance to Prop Line (ft)	erty	Date of Removal
Emission Poir	nt											
Ground			Height Ab		Inside D	iameter				(Cross S	ection
Elevation (ft)	Heig	ht (ft)	Structure			n)	Exit	Temp. ([°] f	F)	Length (in)	1033 5	Width (in)
	,		ondotare	(10)	(,				2011801 (111)		Widen (my
Exit Velocity (FPS)		Flow CFM)	NYTM (E)	(KM)	NYTM (N) (KM)	E	Building		Distance to Prop Line (ft)	erty	Date of Removal
Emission Poir	x +											
Ground			Hoight Ab	01/0	Incido D	iameter			_		Cross S	oction
Elevation (ft)	Heig	ht (ft)	Height Ab Structure			n)	Exit	Temp. (°f	F)	Length (in)		Width (in)
	,		Judia	(11)	(1)	,				Length (III)		width (iii)
Exit Velocity (FPS)		Flow CFM)	NYTM (E)	(KM)	NYTM (N) (KM)	E	Building		Distance to Prop Line (ft)	erty	Date of Removal
				En	nission S	ource/C	ontro	l Inform	nati	on		Continuation Sheet(s)
Emission So	ource	[Date of	Da	ate of	Date	of	(Con	ntrol Type		Manufacturer's
ID	Туре	Cor	struction	Ор	eration	Remo	val	Code		Description	Na	me/Model Number
Design			Design Ca	apacit	y Units				Wa	aste Feed		Waste Type
Capacity	Code			Descr	iption			Code		Description	Code	e Description
Emission So	ource	[Date of	Da	ate of	Date	of		Con	ntrol Type		Manufacturer's
ID	Туре	Cor	struction	Ор	eration	Remo	val	Code		Description	Na	me/Model Number
Design		<u> </u>	Design Ca	apacit	v Units				Wa	aste Feed		Waste Type
Capacity	Code			-	iption			Code		Description	Code	
Emission So	ource	ſ	Date of	Da	ate of	Date	of		L Con	ntrol Type		Manufacturer's
ID	Туре	4	struction		eration	Remo		Code		Description	Na	me/Model Number
Design		1	Design Ca	apacit	v Units				Wa	aste Feed		Waste Type
Capacity	Code			-	iption			Code		Description	Code	

New York State Department of Environmental Conservation

Air Permit Application

DEC ID													
			Pro	cess Info	matic	n				Continuati	on Sh	ieet	t(s)
Emission Unit –	Ш				matric					Process			.(3)
			Pro	cess Des	riptio	n						<u> </u>	
Source Classification Code (SCC)		Total Th				<u> </u>	Throug	ghpu	t Quantity U				
,	Qua	ntity/Hr	ntity/Yr	Co	de			Descriptio	on				
Confidential				ng Schedul		_	Building		Floo	or/Locatio	n		
Operating at Maximum Capacity	citv	Hour	s/Day	Days	/Year		0			·			
	,						_						
			Emissio	on Point I	dentif	ier(s	s)						
		Emis	sion So	urce/Con	trol Id	lenti	ifier(s)			-			
Emission Unit -										Process			Γ
			Pro	cess Des	rintio	n					-	<u> </u>	
Source Classification Code (SCC)		Total Th					Throug	ghpu	t Quantity U				
	Qua	ntity/Hr	Qua	ntity/Yr	Co	de			Descriptio	on			
						_		_					
Confidential				ng Schedul			Building		Floo	or/Locatio	n		
Operating at Maximum Capacity	city	Hour	s/Day	Days	/Year		Ŭ						
						ļ							
			Emissio	on Point I	dentif	ier(s	S)						
		Emis	sion So	urce/Con	trol Id	lenti	ifier(s)						
					Ι	_	T	_			_		_
													_

DEC										
	-									
		Pro	cess Emissi	ons Summ	ary		□ Continuation Sheet(s)			
Emission Unit	-						Process			
CAS Number	Contamin	ant Name	% Thruput	% Capture	% Control	ERP (lbs/hr)	ERP How Determined			
	Potential to Emit		Standard	Potenti	ial to Emit	Act	tual Emissions			
(lbs/hr)	(lbs/yr)	(standard units)	Units	How De	etermined	(lbs/hr)	(lbs/yr)			
Emission Unit	-		•				Process			
CAS Number	Contamin	ant Name	% Thruput	% Capture	% Control	ERP (lbs/hr)	ERP How Determined			
	Potential to Emit		Standard	Potenti	ial to Emit	Act	tual Emissions			
(lbs/hr)	(lbs/yr)	(standard units)	Units		etermined	(lbs/hr)	(lbs/yr)			
Emission Unit							Process			
CAS Number		ant Name	% Thruput	% Capture	% Control	ERP (lbs/hr)	ERP How Determined			
CAS Number	Containin		70 mapat				EN NOW Determined			
	Detential to Emit		Standard	Dotonti	ial ta Emit		tual Emissions			
(lbs/hr)	Potential to Emit (lbs/yr)	(standard units)	Standard Units		ial to Emit etermined	(lbs/hr)	tual Emissions (lbs/yr)			
(103/11)	(103/ 91)	(standard units)	Onics	TIOW DO		(103/111)	(103/ 91)			
		Emissio	n Source Er	nissions Su	ummary		Continuation Sheet(s)			
Emission Source							Process			
CAS Number	Contamin	ant Name	% Thruput	% Capture	% Control	ERP (lbs/hr)	ERP How Determined			
	Potential to Emit		Standard		ial to Emit		tual Emissions			
(lbs/hr)	(lbs/yr)	(standard units)	Units	How De	etermined	(lbs/hr)	(lbs/yr)			
Emission Source							Process			
CAS Number	Contamin	ant Name	% Thruput	% Capture	% Control	ERP (lbs/hr)	ERP How Determined			
	Potential to Emit		Standard	Potenti	ial to Emit	Act	tual Emissions			
(lbs/hr)	(lbs/yr)	(standard units)	Units	How De	etermined	(lbs/hr)	(lbs/yr)			
Emission Source							Process			
CAS Number	Contamin	ant Name	% Thruput	% Capture	% Control	ERP (lbs/hr)	ERP How Determined			
	Potential to Emit		Standard	Potenti	ial to Emit	Act	tual Emissions			
(lbs/hr)	(lbs/yr)	(standard units)	Units		etermined	(lbs/hr)	(lbs/yr)			

Department of Environmental Conservation

	DE	EC ID															
-		-															
	F	Emission		Emission	E	missio	n Unit	: Applicable	e Feo	deral F	Reau	uirem	ents		🗆 Continu	ation	Sheet(s)
Emission U	nit	Point	Process	Source		Туре	-	Subpart	-	ection	Sub		Parag		ubparag.	Cl.	Subcl.
						71							0			-	
				-					_					_			
									_								
		Emission	D	Emission		Emi	ission	Unit State	Only	y Requ	iiren	nents	5	Γ	🗆 Continu	ation	Sheet(s)
Emission U	nit	Point	Process	Source	Title	Туре	Part	Subpart	Se	ection	Sub	odiv.	Parag	. Sı	ubparag.	Cl.	Subcl.
												_					
									_								
Emission Unit Compliance Certification Continuation Sheet(s)																	
								itation				<u> </u>					
Title	Туре	e Part	t S	ubpart	Sec	tion	Sub	division	Para	ragraph Subparagrap				ph	Clause	Sub	clause
Application	le Feo	deral Requ	irement		□ Stat	e Only	/ Requ	irement		Capping							
Emission	Unit	Emissi	on F	Process	Emiss	ion	c	AS Number		Contaminant Name							
Linission	onne	Poin	1000055	Sour	се	0,	lo Humber					Conta					
Monitoring Information																	
Continue Continue	ous Er	mission Mo	onitoring		□ Mo	nitoriı	ng of a	Process or	· Cor	ntrol D	evic	e Par	ameter	rs as	a Surroga	te	
🗆 Intermit			-					nvolving Sp									
□ Ambient	: Air N	/Ionitoring						g/Maintena			dure	es					
					Comp	olianc	e Acti	ivity Desc	ripti	ion							
Work Pra				Proce	ss Mate							R	eferen	ce Te	est Metho	d	
Туре Со	de	Code			Dese	criptio	n										
			Monit	ored Paran	neter						Mar	oufac	turor's	Nam	ne/Model	Numł	or
Code Description										Iviai	Turac	iturer 3	Ivan	ie/iviouei	Num		
		Limit								Limit	Unit	s					
Upp	er		Lower		Code							escrip	tion				
												-					
	Auc	raging Me	thod				nitorir	The Frequence	<u></u>				Pop	ortin	a Poquiro	monte	
Code	Ave		ription		Code		morir	ng Frequen Descripti	-			Со		Jitin	g Require Descr		
Coue		Desc	приоп		coue			Descripti				0	ue		Descr	ption	

Department of Environmental Conservation

	DE	EC ID															
-		-															
	F	Emission		Emission	E	missio	n Unit	: Applicable	e Feo	deral F	Reau	uirem	ents		🗆 Continu	ation	Sheet(s)
Emission U	nit	Point	Process	Source		Туре	-	Subpart	-	ection	Sub		Parag		ubparag.	Cl.	Subcl.
						71							0			-	
				-					_					_			
									_								
		Emission	D	Emission		Emi	ission	Unit State	Only	y Requ	iiren	nents	5	Γ	🗆 Continu	ation	Sheet(s)
Emission U	nit	Point	Process	Source	Title	Туре	Part	Subpart	Se	ection	Sub	odiv.	Parag	. Sı	ubparag.	Cl.	Subcl.
												_					
									_								
Emission Unit Compliance Certification Continuation Sheet(s)																	
								itation				<u> </u>					
Title	Туре	e Part	t S	ubpart	Sec	tion	Sub	division	Para	ragraph Subparagrap				ph	Clause	Sub	clause
Application	le Feo	deral Requ	irement		□ Stat	e Only	/ Requ	irement		Capping							
Emission	Unit	Emissi	on F	Process	Emiss	ion	c	AS Number		Contaminant Name							
Linission	onne	Poin	1000055	Sour	се	0,	lo Humber					Conta					
Monitoring Information																	
Continue Continue	ous Er	mission Mo	onitoring		□ Mo	nitoriı	ng of a	Process or	· Cor	ntrol D	evic	e Par	ameter	rs as	a Surroga	te	
🗆 Intermit			-					nvolving Sp									
□ Ambient	: Air N	/Ionitoring						g/Maintena			dure	es					
					Comp	olianc	e Acti	ivity Desc	ripti	ion							
Work Pra				Proce	ss Mate							R	eferen	ce Te	est Metho	d	
Туре Со	de	Code			Dese	criptio	n										
			Monit	ored Paran	neter						Mar	oufac	turor's	Nam	ne/Model	Numł	or
Code Description										Iviai	Turac	iturer 3	Ivan	ie/iviouei	Num		
		Limit								Limit	Unit	s					
Upp	er		Lower		Code							escrip	tion				
												-					
	Auc	raging Me	thod				nitorir	a Froquer	<u></u>				Pop	ortin	a Poquiro	monte	
Code	Ave		ription		Code		morir	ng Frequen Descripti	-			Со		Jitin	g Require Descr		
Coue		Desc	приоп		coue			Descripti				0	ue		Descr	ption	

	DE															
-		-														
				Dete	rminat	tion o	of Non	-Applicab		itle V A	pplicati	ons Only	/) 🗆	Contin	uation S	heet(s)
Title	T			Cul				Rule Cita		Davia	a un la La d	C I		Claura	- Cult	alawaa
Title	Туре	e Pa	rt	Sut	opart		Sectior	Subdiv	/ision	Paragr	apn	Subparag	graph	Claus	e Sub	clause
						_										
Emissic	on Unit	Emissi	on P	oint	Proces	s I	Emissio	on Source	-	plicable F		-	ent			
									🗆 Sta	ite Only F	Requiren	nent				
						N	lon-A	oplicabilit	y Desc	ription						
	Rule Citation															
Title	Туре	e Pa	rt	Sut	opart		Sectior	-		Paragr	aph	Subparag	raph	Claus	e Sub	clause
	. 164			0.01				00.001		1 41 48				0.0.0.0	00.0	0101010
Fmissio	n Unit	Emissi	on P	oint	Proces	c	Emissi	n Source								
Emission Unit Emission Point Process Emission Source Applicable Federal Requirement Image: Comparison of the second																
	Non- Applicability Description															
			_										_	7.0		Ch+(-)
For only	omissis	n unito u	(hich		t in com			Compliand			an tha	nnlicont				Sheet(s)
		on units w	mich					he time of	-					-		iowing:
Consent	t Order		_		ertified	progr	ess re	ports are to						g /	/	
Emission	Unit	Process		nission		-				cable Fed		1			0	<u> </u>
			S	ource	Title	Туре	Part	Subpa	irt	Section	Subdiv.	Parag.	Subp	arag.	Clause	Subcl.
		R	eme	dial Me	asures	and Ir	iterme	diate Miles	tones				R/I	Da	ite Sched	luled

New York State Department of Environmental Conservation

Air Permit Application

DE					
	-		.		
Emission Sourc		Request for Emission Reduction (Credits	L	□ Continuation Sheet(s)
	e	Emission Reduction Descripti	ion		
		Emission Reduction Description			
			.		
		Contaminant Emission Reduction	n Data	Bedu	ıction
Baseline	Period /	_/to//		Date	Method
Dusenne	//	_/////			
CAS Number		Contaminant Name		ERC (lbs/yr)
CAS Number		Contaminant Name		Netting	Offset
		Facility to Use Future Reducti	ion		
			г т т	Applicatio	on ID
Name			-	-	
Location Address					
□ City/ □ Town ,	/□Village	State			Zip
	-	Use of Emission Reduction Cre	dits	[□ Continuation Sheet(s)
Emission Sourc	e				
		Proposed Project Descriptio	n		
		Contaminant Emissions Increase	e Data		
CAS Number		Contaminant Name		Project Emissi	on Potential (lbs/yr)
	1 .1 .1.	Statement of Compliance			
	-	o of this "owner/firm" are operating <u>in compli</u> ce certification requirements under Section 1			
or are meeting th			14(a)(3)	of the clean All Ac	a Amenaments of 1990,
		Source of Emission Reduction Credit	t - Facil		
				Permit	
Name			-		
Location Address					
🗆 City/ 🗆 Town ,	/□Village	State			Zip
				== = (1	
Emission Source	CAS Number	Contaminant Name			lbs/yr)
Emission Source		Contaminant Name		ERC (I Netting	bs/yr) Offset
Emission Source		Contaminant Name			

Department of Environmental Conservation

	Conservation								
DEC ID									
Supporting Documentation and Attachments									
Required Supporting Documentation	Date of Document								
□ List of Exempt Activities (attach form)									
🗆 Plot Plan									
Process Flow Diagram									
Methods Used to Determine Compliance (attach form)									
Emissions Calculations									
Optional Supporting Documentation	Date of Document								
Air Quality Model									
Confidentiality Justification									
□ Ambient Air Quality Monitoring Plan or Reports									
Stack Test Protocol									
Stack Test Report									
Continuous Emissions Monitoring Plan									
Lowest Achievable Emission Rate (LAER) Demonstration									
□ Best Available Control Technology (BACT) Demonstration									
Reasonably Available Control Technology (RACT) Demonstration									
Toxic Impact Assessment (TIA)									
Environmental Rating Demonstration									
□ Operational Flexibility Protocol/Description of Alternate Operating Scenarios									
Title IV Permit Application									
Emission Reduction Credit (ERC) Quantification (attach form)									
Baseline Period Demonstration									
Use of Emission Reduction Credits (attach form)									
□ Analysis of Contemporaneous Emissions Increase/Decrease									
Other Supporting Documentation	Date of Document								

Attachment B

REGULATORY ANALYSIS OVERVIEW

The Nitrogen Refrigeration Cycle Replacement Project (Project), which entails the in-kind replacement of the existing 82 MMBtu/hr gas turbine (GT014) used for natural gas liquefaction, with a new, more efficient Siemens 54 MMBtu/hr gas turbine (GT015), is located in our Astoria Facility's existing Liquefied Natural Gas LNG (LNG) Plant (Plant) in the Borough of Queens in New York City. This location is designated as attainment/unclassified with respect to the National Ambient Air Quality Standards (NAAQS) for all criteria pollutants with the exception of Ozone. The New York State Department of Environmental Conservation (DEC) has classified the New York City Metropolitan Area (which includes the Project site) as a severe ozone nonattainment area based on the 2008 8-hour O₃ standard. The Project will be a modification of the existing Facility, which is classified as a major source under both the 6 NYCRR Part 231 Prevention of Significant Deterioration (PSD) and Non-Attainment New Source Review (NNSR) air permitting programs. The Project will substantially reduce the Facility's air emissions.

40 CFR 98 – Mandatory Greenhouse Gas Reporting

The Facility is not required to report to USEPA's electronic Greenhouse Gas Reporting Tool (e-GGRT) annual GHG reporting portal. The Project will not be subject to the requirements of Part 98 if the actual GHG emissions from the facility is not greater than 25,000 tons of CO₂e.

New Source Performance Standards

NSPS are technology-based standards applicable to certain new and modified stationary sources in certain source categories. Based upon a review of these standards, the Project is subject to NSPS Subpart KKKK and any applicable general NSPS provisions in Subpart A, as discussed below.

40 CFR 60 – Subpart A – General Provisions

Any source subject to an applicable standard under 40 CFR 60 is also subject to the general provisions under Subpart A. Because the Project is subject to other Subparts of the regulation, the requirements of Subpart A will also apply. The Project will comply with the applicable notifications, performance testing, recordkeeping and reporting outlined in Subpart A.

40 CFR 60 Subpart GG – Stationary Gas Turbines

NSPS Subpart GG, *Standards of Performance for Stationary Gas Turbines*, applies to all stationary gas turbines with a heat input at peak load equal to or greater than 10 MMBtu/hr, based on the lower heating value of the fuel fired, that are constructed, modified, or reconstructed after October 3, 1977. The new combustion turbine is subject to NSPS Subpart KKKK which supersedes Subpart GG and therefore Subpart GG is not applicable.

40 CFR 60 Subpart KKKK – Stationary Combustion Turbines

NSPS Subpart KKKK, Standards of Performance for Stationary Combustion Turbines, applies to all stationary combustion turbines with a heat input at peak load equal to or greater than 10 MMBtu/hr, based on the lower heating value of the fuel fired, that were constructed, reconstructed, or modified after February 18, 2005. The proposed replacement natural gas-fired turbine has a heat input capacity of 54 MMBtu/hr, therefore NO_X emissions from the new turbine shall be limited to 25 ppm at 15 percent O₂ (or 150 ng/J of useful output (1.2 lb/MWh) [Table 1 to Subpart KKKK of Part 60 - Nitrogen Oxide Emission Limits for New Stationary Combustion Turbines].

40 CFR 60 Subpart TTTT – Standards for Performance for Greenhouse Gas Emissions for Electric Generating Units.

Subpart TTTT is not applicable to the Project since the new turbine being installed is not an electric generating unit and its baseload is less that the 250 MMBtu/hr. The new turbine is rated at 54 MMBtu/hr.

National Emission Standards for Hazardous Air Pollutants 40 CFR 63 Subpart YYYY – Stationary Combustion Turbines

Subpart YYYY for Stationary Combustion Turbines is applicable to turbines located at major sources of hazardous air pollutant (HAP) emissions. Major sources of HAPs have potential emissions of a single HAP compound greater than 10 tpy or all HAPs combined greater than 25 tpy. The Facility is not an existing major source of HAP emissions and will remain an area (non-major) source of HAPS after completion of the Project.

NEW SOURCE REVIEW (NSR) ANALYSIS – NETTING

The attached relevant pages of the "Part 231 New Source Review for New and Modified Facilities Applicability Worksheets" show the NSR Netting Analysis supporting this application for modification. The highlighted worksheets in the Table of Contents of the "Part 231 New Source Review for New and Modified Facilities Applicability Worksheets" are the relevant worksheets to the NSR Netting analysis (see Attachment C).

These worksheets show that the net emission increases (NEI) of NO_X and VOC for the Project are 12.15 and 4.65 tons per year respectively. Per 6 NYCRR 231-4.1(b)(41)(i)(a), this NEI is calculated on a potential-to-emit basis for the new combustion turbine and does not include emissions decreases associated with the retirement of the existing combustion turbine. These NEI for NO_X and VOC for the project are below their respective significant net emission increase thresholds (SNEIT) of 25 tons per year for both non-attainment (NA) ozone precursor contaminants and as such this project is not a NSR major modification. However, the operation of the new turbine must comply with the applicable provisions of § 231-6.2 and 231-11.1.

NO_X RACT FOR STATIONARY COMBUSTION INSTALLATION - 6 NYCRR PART 227

6 NYCRR Part 227-2.4(e)(1): Emission Unit AS005B – The presumptive NO_X emission limit for a simple cycle combustion turbine burning natural gas such as the new turbine in the Project is 50 ppmvd corrected to 15 percent O₂. Con Edison, in its December 2011 NO_X RACT compliance plan, re-submitted on October 18, 2018, based on the economic analysis for the feasible NO_X control technologies, proposed an alternate NO_X RACT limit as per 6 NYCRR Part 227- 2.5(c) for the existing turbine located at the Facility. In the compliance plan, it was demonstrated that the cost for controls will be more than the Department established reasonable cost per ton of NO_X reduced. Based on the economic feasibility, a case-by-case NOx emission limit for the existing turbine was established at 92 ppm (0.34 lb/MMBtu) was determined to be the Reasonable NO_X limit. The most recent stack test emissions from this unit (September 2018) demonstrated compliance with this permit limit.

The proposed new turbine will meet the presumptive NO_X emission limit for a simple cycle combustion turbine burning natural gas since it is expected to meet the lower NSPS Subpart KKKK standard of 25 ppmvd corrected to 15% O_2 .

Attachment C

Part 231 New Source Review Applicability Worksheets

PART 231 New Source Review for New and Modified Facilities (effective 2/25/21) Applicability Worksheets

TABLE OF CONTENTS

Acronyms Used in Part 231 Worksheets

SUBPARTS 231-5 & 6 Nonattainment Area NSR Applicability

Worksheet (WKS) Number	Description
WKS-1	Facility Type/Applicability Determination Worksheet
WKS-2	Proposed New Facility in an Ozone NA Area or Attainment Portion of the Ozone Transport Region (VOC & NOx) – Applicability Worksheet
WKS-3	Proposed New Facility in a PM-10 NA area – Applicability Worksheet
WKS-4	Existing Facility – Applicability Worksheet
WKS-5A	Existing Major Facility Modification – Severe Ozone NA area – Applicability Worksheet
WKS-5B	Special Rules For Severe Ozone NA Area (VOC & NOx) – Applicability Worksheet
WKS-6	Existing Major Facility Modification – PM-10 NA area – Applicability Worksheet
WKS-7	Existing Major Facility Modification – Marginal/Moderate Ozone NA Areas or Attainment Portion of the Ozone Transport Region – Applicability Worksheet
WKS-8	Existing Non-Major Facility Modification – Severe Ozone NA Area – Applicability Worksheet
WKS-9	Existing Non-Major Facility Modification – PM-10 NA Area – Applicability Worksheet
WKS-10	Existing Non-Major Facility Modification – Marginal/Moderate Ozone NA Areas or Attainment Portion of the Ozone Transport Region – Applicability Worksheet
WKS-11	Facility Potential To Emit Calculation Worksheet
WKS-12	Project Emission Potential Calculation Worksheet
WKS-13A	Net Emission Increase Analysis Worksheet
WKS-13B	Contemporaneous Creditable Emission Increases/Emission Reduction Credits Worksheet

SUBPARTS 231-7 & 8 Attainment Area NSR (PSD) Applicability

WKS-14	Facility Type/Applicability Determination Worksheet
WKS-15	Proposed New Facility – Applicability Worksheet
WKS-16	Existing Facility Modification – Applicability Worksheet
WKS-17	Existing Major Facility Modification – Applicability Worksheet
WKS-18	Existing Non-Major Facility Modification – Applicability Worksheet
WKS-19	Facility Potential to Emit Calculation Worksheet
WKS-20	Project Emission Potential Calculation Worksheet
WKS-21A	Net Emission Increase Analysis Worksheet
WKS-21B	Contemporaneous Creditable Emission Increases/Emission Reduction Credits Worksheet

Acronyms Used in Part 231 Worksheets

- 1) BAE Baseline Actual Emissions
- 2) BACT Best Available Control Technology
- 3) CO₂ Carbon Dioxide
- 4) CO₂e Carbon Dioxide Equivalents
- 5) CO Carbon Monoxide
- 6) CFR Code of Federal Regulations
- 7) CEI Creditable Emission Increase
- 8) ES Emission Source
- 9) ERC Emission Reduction Credits
- 10) FC Flowchart
- 11) GHG Greenhouse Gas
- 12) GHG_e Greenhouse Gas measured by CO₂ equivalents
- 13) GHG_m Greenhouse Gas measured by mass
- 14) LAER Lowest Achievable Emission Rate
- 15) MFT Major Facility Threshold
- 16) NA Nonattainment
- 17) NEI Net Emission Increase
- 18) NOx Oxides of Nitrogen
- 19) NSR New Source Review
- 20) OTR Ozone Transport Region
- 21) PAE Projected Actual Emissions
- 22) PEP Project Emission Potential
- 23) PM Particulate Matter
- 24) PM-10 Particulate Matter less than 10 micrometers
- 25) PM-2.5 Particulate Matter less than 2.5 micrometers
- 26) PSD Prevention of Significant Deterioration
- 27) PTE Potential to Emit
- 28) SNEIT Significant Net Emission Increase Threshold
- 29) SO₂ Sulfur Dioxide
- 30) SPT Significant Project Threshold
- 31) TPY Tons per Year
- 32) VOC Volatile Organic Compounds
- 33) WKS Worksheet

WKS-1 Subparts 231-5 & 6 NA Area NSR Applicability

NYSDEC-DAR WKS-1 (SEE FC-1) Page 1 of 2 SUBPARTS 231-5 & 6, FACILITY TYPE/APPLICABILITY DETERMINATION WORKSHEET FACILITY NAME: Astoria Facility ADDRESS: 31-01 20th Avenue, Astoria, NY 11105 APPLICATION DEC ID#: 2-6301-00006 COUNTY: Queens PROPOSED PROJECT DESCRIPTION: The proposed project is a replacement of Astoria LNG refrigeration project which involve replacement of the current turbine with a new turbine which is more efficient and lower emissions of NO_x. EMISSION SOURCE ID#s AS005B PREPARER'S NAME Femi Ogunsola TITLE Senior Engineer SIGNATURE DATE **REVIEWER'S NAME REGION #** DATE Y Ν ACTION 1. NA contaminant review. For PSD applicability go to WKS-14 Go to 2 2. Identify NA contaminants based on facility location (See NOTE #1 and maps in Go to 3 Appendix B): VOC <u>✓</u> NO<u>x √</u> PM-10 3. Is a new facility with emissions of any NA contaminant being proposed? YES - Go to 4 \checkmark NO - Go to 5 4. Follow each applicable path Ozone NA - go to WKS-2 PM 10 - go to WKS-3 YES - Go to WKS-4 5. Is a modification, see NOTE #2, being proposed to an existing facility? \checkmark NO - See NOTE #3 COMMENTS: NOTE #1 -All of New York State is within the Ozone Transport Region as designated by the Clean Air Act. Therefore, VOC and NOx are treated as nonattainment contaminants statewide as precursors to ozone.

YSDEC-DAR	WKS-1	Page 2 of 2
NOTE #2 -	<i>Modification 231-4.1(b)(30).</i> Any physical change in, or change in the method of opera which results in a level of annual emissions (not including any emission reductions) in Baseline Actual Emissions of any Regulated NSR Contaminant emitted by such facilit in the emission of any Regulated NSR Contaminant not previously emitted. A modification include the following:	excess of the y or which results
	(i) routine maintenance, repair, or replacement as defined in 6 NYCRR Part 200.	
	(ii) use of an alternative fuel or raw material by reason of an order under sections 2 Energy Supply and Environmental Coordination Act of 1974 (or any superseding le reason of a natural gas curtailment plan pursuant to the Federal Power Act;	
	(iii) use of an alternative fuel by reason of an order or rule under section 125 of the	Clean Air Act;
	(iv) use of an alternative fuel at a steam generating unit to the extent that the fuel is municipal solid waste;	s generated from
	(v) use of an alternative fuel or raw material by a facility which:	
ontinued)		
	(a) the facility was capable of accommodating before January 6, 1975, unless would be prohibited under any federally enforceable permit condition which wa after January 6, 1975 pursuant to 40 CFR 52.21 or under regulations approved CFR Part 51 Subpart I or 40 CFR 51.166; or	is established
	(b) the facility is approved to use, pursuant to this Part, or which is included in a pursuant to 40 CFR 52.21.	a permit issued
	(vi) an increase in the hours of operation or in the production rate, unless such cha prohibited under any permit condition which was established after January 6, 1975 CFR 52.21 or under regulations approved pursuant to 40 CFR Part 51 Subpart I or	, pursuant to 40
	(vii) any change in ownership at a facility.	
NOTE #3 -	Not subject to Subparts 231-5 or 6, however, project may be subject to the notificat of subdivision 231-3.5(c) if the applicant determines that the proposed project does <i>modification</i> because all the project emission increases are attributable to indepen accordance with clause $231-4.1(b)(42)(i)(c)$.	s not constitute a

WKS-4 (SEE FC-4)

SUBPARTS 231-5 & 6, EXISTING FACILITY – APPLICABILITY WORKSHEET			
FACILITY NAME: Astoria Facility			
APPLICATION DEC ID# <u>2-6301-00006</u>		T	1
	Y	Ν	ACTION
1. Is a modification being proposed? (Re: paragraph 231-4.1(b)(30) and NOTE #1 on WKS-1)	\checkmark		YES - Go to 2
			NO - see NOTE #1
2. Identify NA contaminant(s) based on existing facility location (See maps in Appendix B).			Go to 3
Ozone Precursors: VOC ✓ NOx ✓ PM-10			
3. For any identified NA contaminant, is the existing facility's PTE ≥ MFT? * (Use WKS-11 for calculating PTE)	\mathbf{N}		YES - Go to 4
Severe Ozone NA Area: VOC (PTE) <u>16.13</u> tpy \ge 25 tpy? NOx (PTE) <u>128.21</u> tpy \ge 25 tpy? Marginal/Moderate Ozone NA or attainment portion of the OTR: VOC (PTE) tpy \ge 50 tpy? NOx (PTE) tpy \ge 100 tpy?			NO - Go to 5
PM-10 NA Area: PM-10 (PTE)tpy ≥ 100 tpy?			
4. Major facility, follow each applicable path.	V		Severe Ozone NA – WKS-5A
			PM-10 NA - WKS-6
			Marginal/Moderate Ozone NA or attainment portion of the OTR - WKS-7
5. Non-major facility, follow each applicable path	V		Severe Ozone NA – WKS-8
			PM-10 NA - WKS-9
			Marginal/Moderate Ozone NA or attainment portion of the OTR - WKS-10
NOTE #1 - Not subject to Subpart 231-5 or 6 but may be subject to subdivision	231-3	.5(c).	

* For a facility in an area that is NA for multiple contaminants, if the facility PTE is greater than or equal to the MFT for one NA contaminant it is considered to be major for all applicable NA contaminants

. . . .

SUBPART 231-6, EXISTING MAJOR FACILITY MODIFICATION – SEVERE OZONE NA AREA – APPLICABILITY WORKSHEET									
FACILITY NAME Astoria Facility									
APPLICATION DEC ID# 2-6301-00006									
EMISSION SOURCE. ID#SASOOSB	<u>,</u>								
	Υ	Ν	ACTION						
1. Major facility. For VOC or NOx, is PEP ≥ SPT?* (Use WKS-12 for calculating PEP)	\checkmark		YES - Go to 2						
VOC (PEP) $\underline{4.65}$ tpy \geq 2.5 tpy? NOx (PEP) $\underline{12.15}$ tpy \geq 2.5 tpy?			NO - See NOTE #1						
2. Has a NEI analysis been provided by the applicant? (Re: paragraph 231- 4.1(b)(31))	\leq		YES - Go to 3						
			NO - See NOTE #2						
3. For VOC or NOx, is NEI > SNEIT?* (Use WKS-13A & B for calculating NEI) VOC (NEI) <u>4.65</u> tpy > 25 tpy?		\checkmark	YES - See NOTE #3, go to 4						
NOx (NEI) <u>12.15</u> tpy > 25 tpy?			NO - See NOTE #4						
4. Has the applicant complied with all of the following permit requirements (Re: YES - See NOTE #5 section 231-6.3):									
a. Compliance certification (Re: subdivision 231-6.3(a)).			NO - See NOTE #2						
b. Submittal of a benefit analysis (Re: subdivision 231-6.3(b)).									
c. Submittal of a LAER demonstration, if required. (Re: subdivision231-6.3(c) and section 231-6.5)									
d. Submittal of an air quality impact evaluation, if required. (Re:subdivision									
231-6.3(d))									
e. Identification of emission sources providing internal offset or emission									
offset and submittal of copies of modified permits for the emission sources (Re: subdivision 231-6.3(d)).									
NOTE #1 - Not subject to Subpart 231-6 review, however, must comply with appreasonable possibility requirements for insignificant modifications.	olicab	e sec	tion 231-11.2						
NOTE #2 - Notice of incomplete application should be sent.									
NOTE #3 - Modification subject to Subpart 231-6 for each NA contaminant for w SNEIT.	hich t	he mo	odification's NEI >						
Control technology and emission offset [†] required as provided in spec	cial ru	les (s	ee WKS-5B)						
NOTE #4 - Must comply with applicable sections 231-6.2 and 231-11.1 Netting r	Must comply with applicable sections 231-6.2 and 231-11.1 Netting requirements.								
NOTE #5 - Detailed NA review may proceed.									

* Each NA contaminant is evaluated independently and can result in the need to follow the "yes" path for one and the "no" path for another

[†] An offset may be obtained from another NA area of equal or higher classification if emissions from such other area contribute to a violation of the National Ambient Air Quality Standard for the NA contaminant in the NA area of the modification (Re: section 231-6.6).

SUBPARTS 231-5 & 6, FACILITY POTENTIAL TO EMIT CALCULATION WORKSHEET

FACILITY NAME: Astoria Facility

APPLICATION DEC ID# 2-6301-00006

NOTE: Facility PTE is -

A. For a proposed new facility - Sum of the PTE of each proposed emission source.

B. For an existing facility - Sum of the PTE of each existing emission source.

NOTE: *PTE* - The maximum capacity of an air contamination source to emit any regulated air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of the emission source to emit a regulated air pollutant, including air pollution control equipment and/or restrictions on the hours of operation, or on the type or amount of material combusted, stored, or processed, shall be treated as a part of the design if the limitation is enforceable by the department and the administrator. Fugitive emissions, to the extent that they are quantifiable, are included in determining the potential to emit where required by an applicable requirement. Secondary emissions (as defined in Part 231-4 of this Title) are not to be included when calculating an emission source's potential to emit. For emergency power generating stationary internal combustion engines, the potential to emit will be based on a maximum of 500 hours of operation per year per engine unless a more restrictive limitation exists in a permit or registration. (Re: subdivision 200.1(bl))

Nonattainment contaminant(s): (check)	\checkmark	VOC	\checkmark	NOx	PM-10
	-				

Facility Emission Potential Calculation EMISSION SOURCE ID# PTE of VOC (tpy) PTE of NOx (tpy) PTE of PM-10 (tpy) A-S005B 8.62 122.11 A-S0020 0.33 5.62 A-S0021 0.04 0.48 A-S0008 2.61 4.53 A-S0007 Facility Potential To Emit (tpy) = (Sum of the16.13 128.21 potential to emit of each emission source)

Ν	YS	D	EC	-D/	٩R

SUBPARTS 231-5 & 6, PROJECT EMISSION POTENTIAL CALCULATION WORI	KSHEI	ET	
FACILITY NAME: Astoria Facility			
APPLICATION DEC ID# 2-6301-00006			
EMISSION SOURCE ID#s_ AS005B ,,,,,,,_		,	_
	Υ	Ν	ACTION
1. Does the proposed modification involve addition of one or more new emission sources?	\checkmark		YES - Go to 2
			NO - Go to 3
2. For each new emission source, what is the PTE, see NOTE #1, in tpy of each identified NA contaminant?			Go to 4
3. Therefore, the modification is of one or more existing emission sources.			Go to 5
4. Does the modification involve one or more existing emission sources?		\checkmark	YES - Go to 5
			NO - Go to 7
5. For each existing emission source undergoing modification, what is the BAE, see NOTE # 2, in tpy of each NA contaminant? ES ID#			Go to 6
6. For each existing emission source undergoing modification, what is the PAE, see NOTE #3, or the PTE, see NOTE #1, (if used in lieu of PAE) in tpy of each NA contaminant after modification? ES ID#			Go to 7
7. Project Emission Potential of VOC = Sum of:			
a. Row 2 for VOC from each new emission source 4.65 +++++++=_ 4.65	<u>i</u> tpy	/;	
 and b. Where Row 6 > Row 5: the difference between future and baseline emission each modification of an existing emission source Where Row 6 ≤ Row 5: enter a zero for the VOC increase from that emissio 0 + + + + + + + + = 0 PEP of VOC = a + b = 4.65 tpy 	ns (Rov n sour	w 6 - ce	Row 5) for VOC from

(continued)

N <u>YSD</u>	EC-D	AR					WKS-12				Page 2 of 3
	Pro	piect En	nission	Potentia	l of NOx	= Sum of:					
						nission sou	rce				
	u.							<u>т</u>	= <u>12.15</u>	tov:	
	٦	12.15	· T	T	T	T	T	T		tpy,	
an			D				<i>.</i> .			(D 0 D	
	b.							and baselin	e emissions	s (Row 6 - R	low 5) for NOx from
						emission so					
		Where	Row 6	≤ Row 5:	enter a z	ero for the I	NOx incre	ease from th	at emission	source	
		0	+	+	+	+	+	+	= 0	tpy	
		PEP	of NO	x = a + b =	= 12.15	tpv					
						/					
	Pro	niect En	nission	Potentia	of PM-1	0 = Sum of					
						emission se					
	a.								_	tova	
	-1		+	+	+	+	+	+	=	tpy;	
an										(D 0 D	
	b.							and baselin	e emissions	s (Row 6 - R	low 5) for PM-10 from
						emission so					
		Where	Row 6	≤ Row 5:	enter a z	ero for the I	PM-10 inc	crease from	that emission	on source	
			+	+	+	+	+	+	=	tpy	
		PEF	P of PM	I-10 = a +	b =	tpy					
							•				
INC	DTE	#1 -									ce to emit any
			0						0		r operational limitation
											g air pollution control
			equij	pment and	d/or restric	ctions on the	e hours o	f operation,	or on the ty	pe or amou	nt of material
			coml	busted, st	ored, or p	rocessed, s	hall be tre	eated as a p	art of the de	esign if the li	imitation is enforceable
			by th	e departn	nent and t	he adminis [.]	trator. Fu	gitive emiss	ions, to the	extent that t	hey are quantifiable,
											e requirement.
											ed when calculating an
											internal combustion
											ation per year per
			engii	ne unless	a more re	estrictive lim	nitation ex	tists in a per	mit or regis	tration.	
NC	DTE	#2 -	Base	eline actua	al emissio	ns 231-4 10	(b)(4) The	e annual rat	e of emissio	ons of a regu	latedNSR
								nined as fol		no or a roge	
			COIL		onn an ch	11331011 3001	ce deterri		0003.		
			(1)	T h. a							
											vhich an emission
											ned by using the
									types of ma	aterials proc	essed, stored, or
			CO	mbusted o	during the	selected ba	aseline pe	eriod.			
				(a) The a	average ra	ate includes	s fuaitive e	emissions to	the extent	quantifiable	if the facility belongs
											e, and emissions
								and malfunc			
				associat		anups, snu					
				(h) The		oto must	adiuate -	المعسمين			nations on incident that
											npliant emissions that
				occurred	d while the	emission :	source wa	as operating	above any	applicable e	emission limitation.
(cont		-1)									

(continued)

Ν	YSDEC	-DAR

	(c) Except for electric utility steam generating units, the average rate must be adjusted downward to exclude any emissions that exceeded an emission limitation with which the emission source must currently comply, had such emission source been required to comply with such limitations during the baseline period. However, if an emission limitation is part of a maximum achievable control technology standard that the administrator proposed or promulgated under 40 CFR Part 63, the baseline actual emissions rate need only be adjusted if the State has taken credit for such emissions reductions in an attainment demonstration or maintenance plan consistent with the requirements of 40 CFR 51.165(a)(3)(ii)(G). For the purposes of a creditable emission increase or emission reduction credit used for netting, currently means at the time that the increase or reduction actually occurred.
	(d) For a regulated NSR contaminant, when a project involves multiple emissions sources, one baseline period must be used to determine the baseline actual emissions of the emission sources being modified. A different baseline period cannot be used for each regulated NSR contaminant.
	(e) For multiple emission sources shutting down or taking limits not in conjunction with a modification, a different baseline period may be used for each emission source.
	(ii) The applicant must use a reliable basis for quantifying the baseline actual emissions. Continuous emissions monitoring (CEM) data or stack test data approved by the department must be used if the facility is required to generate such data. Facilities required to submit annual emission statements in accordance with Subpart 202-2 of this Title must use the same method for determining baseline actual emissions as was used for the approved emission statements for the time period encompassing the baseline period, unless CEM or stack test data is available. If such data is not available, acceptable bases for quantifying baseline actual emissions include, but are not limited to, EPA's AP-42 emission factors, and fuel and solvent purchase records, with department approval.
NOTE #3 -	Projected actual emissions 231-4.1(b)(42). The maximum annual rate, in tpy, at which an existing emission source is projected to emit a regulated NSR contaminant in any one of the five years (12-month period) following the date the source commences operation after a modification, or in any one of the 10 years following that date if the project involves increasing the emission source's design capacity or its potential to emit that regulated NSR contaminant and full utilization of the emission source would result in exceeding the applicable significant project threshold in Tables 3, 4 or 6 of Subpart 231-13 of this Part or a significant net emissions increase at the major facility. Projected actual emissions are calculated only for existing major facilities.
	(i) In determining the projected actual emissions as defined in this Section (before beginning actual construction), the owner or operator of the major facility:
	(a) must consider all relevant information, including but not limited to, historical operational data, the facility's own representations, the facility's expected business activity and the facility's highest projections of business activity, the facility's filings with the State or federal regulatory authorities, and compliance plans under the approved State Implementation Plan; and
	(b) must include fugitive emissions to the extent quantifiable if the facility belongs to one of the source categories listed in Part 201-2.1(b)(21)(iii) of this Title, and emissions associated with startups and shutdowns; and
	(c) may exclude, in calculating any increase in emissions that results from the particular project, that portion of the emission source's emissions following the project that the existing emission source could have accommodated during the consecutive 24 month period used to establish the baseline actual emissions and that are also unrelated to the particular project.
	(ii) In lieu of using the method set out in subparagraph (i) of this paragraph, the owner or operator of the facility may elect to use the potential to emit of the emission source(s), in tpy.

SUBPART 231-6, NET EMI	SSION INCREASE ANALYSI		ET (Re: pa	aragraph	231-4.1(b)(31))			
FACILITY NAME: Astoria				5 1				
APPLICATION DEC ID# 2-								
EMISSION SOURCE ID#s_	AS005B,,	,	,	,	,			
NOTE: A net emission increated exceeds the SPT.	ase analysis is required for ea	ch nonattainm	ient conta	minant fo	r which the PEP equals or			
Nonattainment contaminal	nt(s) for which PEP ≥ SPT (ch	eck one): 🗸	VOC 🗸	NOx	PM-10			
Contemporaneous Period:	(Re: FC-12, FC-13, and/or F	C-14 and para	graph 231	-4.1(b)(1	4))			
VOC or NOx; and P commence construct commence operation <u>Severe Ozone Nona</u> period which ends w as stated by the app	<u>Marginal/Moderate Ozone Nonattainment Areas and Attainment Portion of the Ozone Transport Region for</u> <u>VOC or NOx; and PM-10 Nonattainment Area</u> - The period beginning five years prior to the scheduled commence construction date of the new or modified emission source, and ending with the scheduled commence operation date. These dates must be proposed by an applicant in a permit application. <u>Severe Ozone Nonattainment Area</u> - for emissions of VOC or NOx only, the five consecutive calendar year period which ends with the calendar year that the proposed modification is scheduled to commence operation, as stated by the applicant in a permit application.							
201 of this Title, the 621.2 of this Title) fo	<u>g Scenario</u> - for facilities propo period beginning five years pr or the permit modification and periods, as applicable:	ior to the date	of comple	ete applic	ation (as defined in section			
	ce construction date: 08/31/2							
Scheduled commen	ce operation date: <u>12/31/2</u>	025						
Start date of contem End date of contemp								
 Net Emission Increase - The aggregate increase in emissions of a regulated NSR contaminant in tpy at an existing major facility resulting from the sum of: (i) the project emission potential of the modification; and (ii) every creditable emission increase at the facility which is contemporaneous and for which an emission offset was not obtained; and (iii) any ERC at the facility, or portion thereof, selected by the applicant which is contemporaneous, and which was not previously used as part of an emission offset, an internal offset, or relied upon in the issuance of a permit under this Part. 								
Net Emission Increase Summary								
	VOC	NOx			PM-10			
Project Emission Potential (tpy, use WKS-12)	4.65	12.15						
Contemporaneous creditable emission increase/ERC (<u>+</u> tpy, use WKS-13B)	0	0						
NET EMISSION INCREASE (<u>+</u> tpy)	4.65	12.15						

Attachment D - PTE EMISSION CALCULATIONS

Astoria LNG Gas Turbine - Existing PTE (8,760 hours) Emission Unit ID AS005B <u>Current</u>: Hispano Suiza 1203 Gas Turbine rated at 82 MMBtu/hr

	Emission	Emission POTENTIAL TO			
	Factor	Emiss	ion Rate		
Pollutant	[lb/MMBtu]	[lb/hr]	[lb/yr]	[tons/yr]	
NOx	0.340	28	244,229	122.1	
VOC	0.024	2	17,240	8.6	
CO	0.216	17.7	155,157	77.6	
SO ₂	0.0006	0.049	431	0.22	
PM	0.014	1.1	10,056	5.0	
PM10	0.014	1.1	10,056	5.0	
CO ₂	117.08	9,601	84,100,906	42,050	
CH ₄	0.0086	0.7052	6,178	3.09	
N ₂ O	0.003	0.246	2,155	1.08	

Astoria LNG Gas Turbine – Future PTE (4,380 hours) Emission Unit ID: AS005B <u>Replacement:</u> Siemens SGT-100-2S Gas Turbines rated at 54 MMBtu/hr

				POTENTIAL TO EMIT			
Pollutant	Emissions Guaranteed	Emission Factor [lb/MMBtu]	Data Source	Emission Rate		[tons per yr.]	
	[ppmvd @ 15% O2]			(lb/hr)	(lb/yr.)	@4380hrs/yr	
NOx	25	0.1027	Siemens	5.17	45,289	12.15	
VOC	10	0.0393	Siemens	1.98	17,345	4.65	
СО	25	0.0625	Siemens	3.14	27,506	7.39	
SO ₂		0.0006	EPA AP-42	0.032	284	0.07	
PM		0.014	EPA AP-42	0.76	6,623	1.66	
PM 10		0.014	EPA AP-42	0.76	6,623	1.66	
CO ₂		152.89	Siemens	8,256	72,323,086	18,081	
CH ₄		0.0086	EPA AP-42	0.4644	4,068	1.02	
N ₂ O		0.003	EPA AP-42	0.162	1,419	0.35	

Entire Facility – Potential To Emit

Consolidated Edison - Astoria Facility (existing)

	Potential to Emit				
Pollutant	(lb/yr)	(tons/yr)			
SO ₂	3,555	1.78			
NO _X	256,438	128.22			
РМ	55,303	27.65			
PM ₁₀	50,562	25.28			
СО	202,714	101.36			
VOC	32,243	16.12			
CO ₂	99,914,892	49,958			
Hazardous Air Pollutants					
Acetaldehyde	28.7328	0.0144			
Acrolein	4.5972	0.0023			
Antimony		0.0000			
Arsenic	0.4452	0.0002			
Benzene	8.6198	0.0043			
Beryllium	0.0002	0.0000			
Bis(2-ethylhexyl) phthalate		0.0000			
1,3-Butadiene	0.3089	0.0002			
Cadmium	0.0152	0.0000			
Chromium	2.0429	0.0010			
Cobalt	0.2219	0.0001			
Dichlorobenzene		0.0000			
Ethylbenzene	369.7643	0.1849			
Formaldehyde	796.1827	0.3981			
Hexane	0.0000	0.0000			
Hydrochloric Acid Mist		0.0000			
Lead	0.5054	0.0003			
Manganese	0.7061	0.0004			
Mercury	0.0036	0.0000			
MEK	137.1277	0.0686			
Methanol	0.0000	0.0000			
MIBK	0.0000	0.0000			
Naphthalene	1.3838	0.0007			
Nickel	6.6700	0.0033			
Phenol		0.0000			
Phosphorus		0.0000			
Selenium	0.0003	0.0000			
Toluene	722.4681	0.3612			
Xylene	1197.9546	0.5990			
PAH's & other POM	1.5803	0.0008			
Total HAPs	3,279.3	1.6397			

Attachment E

SITE PLAN

Attachment F

Climate Leadership and Community Protection Act (CLCPA) Analysis

CONSOLIDATED EDISON COMPANY OF NEW YORK, INC CON EDISON - ASTORIA FACILITY TITLE V PERMIT MODIFICATION

31-01 20TH AVENUE ASTORIA, NEW YORK 1105

CLCPA GREENHOUSE GAS ASSESSMENT

Prepared by AKRF, Inc. Henry Kearney Kevin Edwards Consolidated Edison Company of New York, Inc. Astoria Facility Title V Permit Modification Climate Leadership and Community Protection Act Greenhouse Gas Assessment

A. INTRODUCTION

In July 2019, New York State enacted the Climate Leadership and Community Protection Act (CLCPA) establishing statewide greenhouse gas (GHG) emission limits that represent a 40 percent reduction from 1990 levels by 2030, and an 85 percent reduction from 1990 levels by 2050. Among other requirements to meet the state's emission reduction goals, the CLCPA directs state agencies to determine if their decisions are consistent with the statewide GHG emission limits established by the CLCPA in the Environmental Conservation Law (ECL) Article 75¹ as well as ensure that decisions shall not disproportionately burden disadvantaged communities.² Under the program policy enacted by the New York State Department of Environmental Conservation (NYSDEC) (DAR-21, *The Climate Leadership and Community Protection Act and Air Permit Applications*), a CLCPA consistency determination is required for applications for new state facility permits, new Title V permits, certain air facility registrations and certain modifications to state facility permits and Title V permits.

Consolidated Edison Company of New York, Inc. (Con Edison) is seeking a modification of its Title V Permit its Astoria Facility (Facility), which includes Con Edison's Liquefied Natural Gas (LNG) Plant (Plant). Under the permit modification application, Con Edison would install a new combustion turbine as an in-kind replacement of the existing combustion turbine used to power the Plant's nitrogen refrigeration cycle (the proposed project), for conversion of natural gas to LNG, which is then stored on site. The existing combustion turbine has been in operation since the 1970s and is in need of replacement due to its age and condition. The proposed modification to the existing Title V Permit would also restrict usage of the proposed turbine to 4,380 hours of operation per year. The proposed turbine would be installed at the same site as the current Plant. Other equipment regulated under the Title V permit would not be affected by the proposed project.

Per NYSDEC policy, a CLCPA consistency assessment was performed for the proposed combustion turbine at the Plant, as discussed in more detail below. This assessment demonstrates that the proposed project would result in decreased energy consumption associated with the Plant's liquefaction process. Therefore, the proposed modification to the Title V Permit would result in a significant net reduction of GHG emissions and is not expected to interfere with achieving the statewide GHG emission reduction targets for 2030 and 2050, consistent with the GHG reduction goals of the CLCPA.

Co-pollutant emissions from the proposed project have also been quantified and there is a demonstrated reduction at the Facility resulting from the proposed project. Additionally, as a result, any localized effects of co-pollutants beyond the Facility at nearby disadvantaged communities would decrease with

¹ CLCPA Section 7(2)

² CLCPA Section 7(3)

the use of more efficient equipment. Therefore, the proposed modification to the Title V permit would also be consistent with the goals of avoiding disproportionate impacts on disadvantaged communities, consistent with the environmental justice goals under the CLCPA.

B. PROJECT DESCRIPTION

PROCESS DESCRIPTION

The LNG Plant at the Con Edison Astoria Facility provides a backup supply of natural gas that enables Con Edison to maintain service to utility customers -- including hospitals, schools, businesses and homes -- during unplanned gas supply contingencies and extreme winter weather. The Plant's combustion turbine powers the nitrogen refrigeration cycle that liquefies natural gas for storage at the Facility. The LNG is stored in an existing storage tank with a capacity of approximately 1 billion standard cubic feet of natural gas (SCF). The Plant stores only pipeline gas and does not receive natural gas delivered via surface transportation (truck or rail).

PROPOSED PROJECT

Con Edison operates the Plant on an approximately 25-acre site within Con Edison's larger approximately 200-acre complex in Astoria, Queens (NY). The proposed project entails the in-kind replacement of the existing 82 MMBtu/hr combustion turbine, which powers the nitrogen refrigeration cycle, with a new, more efficient 54 MMBTU/hr combustion turbine on the same site. The existing 82 MMBtu/hr combustion turbine would be decommissioned and removed. As mentioned above, there is a present operational need to replace this existing turbine, since it is obsolete and the original equipment manufacturer no longer manufactures turbines and, thus, cannot provide replacement parts. As a result, Con Edison has had difficulty sourcing spare parts needed to maintain the turbine, a situation that threatens the continued availability and reliability of the Plant to store backup gas and supply public utility customers during system contingencies.

The proposed modification to the Title V Permit would include the installation of the new combustion turbine to replace the existing combustion turbine. Additionally, the Title V Permit would restrict the proposed turbine's operating hours to 4,380 hours per year, compared to the existing combustion turbine, which has no restrictions on operating hours.

With the combustion turbine replacement, the Plant would be able to meet the design intent of the LNG tank to be filled at approximately 6 million SCF per day. The proposed project would not, however, change the Plant's LNG storage capacity or the amount of LNG vaporized.

C. METHODOLOGY FOR ESTIMATING GHG EMISSIONS

POLLUTANTS OF CONCERN

GREENHOUSE GASES

GHGs are those gaseous constituents of the atmosphere, both natural and anthropogenic, that absorb and emit radiation at specific wavelengths within the spectrum of infrared radiation emitted by the Earth's surface, the atmosphere, and clouds. The general warming of the Earth's atmosphere caused by this phenomenon is known as the "greenhouse effect." The United States Environmental Protection Agency (EPA) identifies seven types of GHGs that are relevant for GHG inventory purposes: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), nitrogen trifluoride (NF₃), and sulfur hexafluoride (SF₆). There are no significant direct or indirect sources of HFCs, PFCs, NF_3 , or SF_6 associated with the proposed project; therefore, the GHG assessment focuses on CO_2 , N_2O , and methane.

To present a complete inventory of all GHGs, component emissions are added together and presented as carbon dioxide equivalent (CO_2e) emissions—a unit representing the quantity of each GHG weighted by its effectiveness using CO_2 as a reference. This is achieved by multiplying the quantity of each GHG emitted by a factor called global warming potential (GWP). GWPs account for the lifetime and the radiative forcing³ of each chemical over a period of 20 years (e.g., CO_2 has a much shorter atmospheric lifetime than N₂O and therefore has a much lower GWP). The GWPs for the main GHGs discussed here are presented in **Table 1**.

	Global Warming Potential (GWP) for Major GHGs
Greenhouse Gas	20-Year Horizon GWP
Carbon Dioxide (CO ₂)	1
Methane (CH ₄)	84
Nitrous Oxide (N ₂ O)	264
Source: 6 NYCRR 496.5	

Tabla 1

CO-POLLUTANTS

Co-pollutants represent air contaminants with the potential to affect human health within the local community nearby an emission source. This would include major air pollutants carbon monoxide (CO), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), and particulate matter (PM), and volatile organic compounds (VOCs). Ambient concentrations of CO, PM, NO₂, SO₂, ozone, and lead are regulated by the U.S. Environmental Protection Agency (EPA) under the Clean Air Act (CAA) and are referred to as criteria pollutants; emissions of VOCs, NO_x, and other precursors to criteria pollutants from certain source categories are also regulated by EPA.

In addition to the criteria pollutants, non-criteria air pollutants, also called hazardous air pollutants (HAPs), may be of concern. HAPs are those pollutants that are known or suspected to cause serious health effects in small doses. HAPs are emitted by a wide range of human-made and naturally occurring sources.

STATEWIDE GHG INVENTORY AND EMISSION LIMITS

As part of the regulations adopted at 6 NYCRR Part 496 in 2020, the New York State Energy Research and Development Authority (NYSERDA) developed the 1990 baseline GHG emissions for New York State consistent with the calculation requirements specified under the CLCPA. The statewide inventory is separated into four sectors—Energy Sector, Industrial Processes and Product Use, Agriculture Forestry and Other Land Use, and Waste. The GHG emissions associated with the LNG Plant would fall within the following sectors:

1. Energy Sector—This sector includes direct fuel combustion within the state (associated with building fuel usage, vehicle travel, and electricity generation), fugitive emissions within the state (associated with emissions released during production and transportation of fuels), electricity

³ *Radiative forcing* is a measure of the influence a gas has in altering the balance of incoming and outgoing energy in the Earth-atmosphere system and is an index of the importance of the gas as a GHG.

transmission (associated with the leakage of GHGs during the manufacture, use, and disposal of equipment used in the transmission and distribution of electricity), fuels imported into the state (associated with emissions from out of state industrial production and transportation), and electricity imported into the state (associated with emissions from out of state generation and transmission). The energy sector also includes GHG emissions from fuel consumption at the LNG Plant.

2. Industrial Processes and Product Use—This sector includes emissions from the manufacturing process or from a manufactured product and are separate from the combustion of fossil fuels by industries, which is accounted for in the Energy sector. However, since natural gas would not come from any one origin, the upstream component for fuel extraction within the state would be accounted for within the Industrial Processes and Product Use Sector.

The GHG inventory performed by NYSERDA determined a statewide 1990 annual baseline emission total of 409.78 million metric tons (MMT) of CO₂e. Subsequently, this established the statewide annual CO₂e emission limits for 2030 and 2050 as 245.87 MMT and 61.47 MMT, respectively.

GHG EMISSIONS

The GHG emission estimates associated with the combustion turbine replacement were performed consistent with NYSDEC guidelines (as specified in DAR-21). Emissions were estimated for both the maximum operations as allowed by the permit (Potential to Emit, or "PTE") and the actual anticipated emissions from the GHG emissions sources. In addition, emissions associated with natural gas that is liquefied to produce LNG that is stored at the Facility and later vaporized were estimated.

The proposed modifications to the Title V Permit would not impact consumption of electricity or changes in fuel type that could result in changes in emissions in future years. Therefore, GHG emission estimates would represent the Plant's GHG emissions in future years.

COMBUSTION TURBINES

Fuel Usage

As discussed above, the proposed turbine would both: (1) operate with a higher energy efficiency compared to the existing unit; and (2) be restricted to 4,380 hours of operation per year. The PTE for the combustion turbines were based on the maximum allowable hours of operation—8,760 hours per year for the existing turbine (since there is no hours limit in the permit currently) and 4,380 hours per year for the proposed turbine (Con Edison's proposed hourly permit limit). Consequently, the turbine replacement would result in a decrease of the maximum potential natural gas consumed from 718,320 MMBtu per year using the existing turbine compared to 236,520 MMBtu per year using the proposed turbine—a 67.1 percent reduction.

Consistent with DAR-21, actual emissions are reflective of the highest 24-month average GHG emissions during the latest five years. Therefore, actual emissions for the combustion turbines were based on the maximum 24-month average number of hours the turbines would operate observed within five years of records (2017-2021)—2,929 hours per year as observed over the 2017-2018 time period. While the higher efficiency of the proposed turbine is anticipated to significantly reduce the number of hours of operation needed to produce LNG for storage at the Plant compared to the existing turbine, it was conservatively assumed that the new combustion turbine would operate for the same number of hours as the existing combustion turbine in the calculation of actual anticipated emissions associated

with the future condition.⁴ Consequently, the turbine replacement would result in a decrease of the anticipated amount of natural gas consumed from 221,242 MMBtu per year using the existing turbine compared to 158,166 MMBtu per year using the proposed turbine—a 28.5 percent reduction.

Furthermore, in the calculation of actual anticipated emissions, the proposed turbine was assumed to operate at full load during the actual hours of operation, while the existing turbine operated at less than full load. Therefore, GHG emissions associated with the proposed turbine would be less than the conservative estimates of actual GHG emissions presented, and the proposed project would in actuality result in a larger reduction of GHG emissions.

Direct Emissions

GHG emissions from the existing and proposed turbines were calculated based on estimated fuel consumption over a single year. The quantity of fuel was then multiplied by unit-specific emission factors of 117 lb CO₂ per MMBtu and 153 lb CO₂ per MMBtu for the existing and proposed turbines, respectively, obtained from a published emission factor (U.S. Energy Information Administration (EIA)) and manufacturer's specifications. In order to develop CO₂e emission factors, emission factors of N₂O and CH₄ for natural gas combustion (0.10 g/MMBtu and 1.00 g/MMBtu, respectively) were taken from EPA Emission Factors for Greenhouse Gas Inventories for stationary combustion.⁵ These emissions would correlate to direct fuel combustion under the Energy Sector of the 1990 baseline GHG Inventory.

Upstream Emissions

Upstream emissions were projected for the annual fuel consumed by the existing and proposed combustion turbine under the PTE and anticipated actual operations. Upstream emission factors for natural gas have been specified by NYSDEC for upstream and out-of-state emissions.⁶ Fuel may originate from either in-state or out-of-state sources; therefore, portions of the Plant's upstream emissions would correlate to the Industrial Processes and Product Use Sector as fuel production emissions. The remaining portion would correlate to the Energy Sector as either direct fuel combustion associated with in-state vehicle travel, fugitive emissions occurring within the state, as well out-of-state emissions associated with the production and transport of imported fuel.

LNG THROUGHPUT

As discussed above, the proposed project would not change the Plant's LNG storage capacity, the amount of LNG vaporized, or increase transmission of natural gas to the site for liquefaction. Therefore, the working capacity of the LNG storage tank would remain as 1,000,000,000 standard cubic feet. The assessment of GHG emissions associated with the amount of LNG liquefied per year during actual operations were estimated based on the 24-month average annual amount of LNG as recorded over the 2018-2019 time period—267,576,696 standard cubic feet of natural gas.

The emissions associated with the operation of the LNG process included the upstream emissions associated with the natural gas delivered to the site for LNG storage, the downstream emissions associated with the distribution of natural gas from the site after vaporization, and the combustion of

⁴ As noted in the analysis, the comparison is reasonable given that the project will not change the LNG storage capacity, or the amount of LNG vaporized at the Facility.

⁵ EPA. Emission Factors for Greenhouse Gas Inventories. 26 March 2020.

⁶ NYSDEC. Preliminary Interim Draft Emission Factors for Use by State Agencies and Project Proponents. February 2021

this natural gas at the end user. In this situation, the quantity of fuels to be produced, stored at the Plant as LNG, and distributed to end-users would be the same before and after the proposed project. This is because the amount of natural gas stored at LNG is limited by the existing capacity of the LNG storage tank, which is not changing as part of the proposed project.

D. GREENHOUSE GAS EMISSIONS

POTENTIAL TO EMIT

The maximum potential fuel consumption, usage, emission factors, and resulting GHG PTE emissions for the combustion turbine and LNG usage for the existing Plant and in the future with the proposed project are presented in **Tables 2** and **3**, respectively.

1 able	4
Annual GHG PTE Emissions from Combustion Turbine and LNG Usag	ge
Existing LNG Plan	nt

			E		Emissions		
Туре	Annual Usage	Category	CO ₂				
Natural Gas	704 005 004 (Direct ^{(1) (2)}	53,107 g/MMBtu	1.00 g/MMBtu	0.10 g/MMBtu	38,227	
for Combustion	704,235,294 scf	Upstream ⁽³⁾	12,131 g/MMBtu	357 g/MMBtu	0.140 g/MMBtu	30,282	
Turbine				Na	atural Gas Total	68,508	
Natural Gas		Direct (2)	53,060 g/MMBtu	1.00 g/MMBtu	0.10 g/MMBtu	0 (5)	
for LNG		Upstream ⁽³⁾	12,131 g/MMBtu	357 g/MMBtu	0.140 g/MMBtu	42,999	
Liquefaction and Storage	1,000,000,000 scf	Downstream ⁽⁴⁾ (Transmission)	2 g/MMBtu	68 g/MMBtu	N/A	5,828	
		Downstream ⁽²⁾ (End Use)	53,060 g/MMBtu	1.00 g/MMBtu	0.10 g/MMBtu	54,234	
					LNG Total	103,061	
					Plant Total	171,569	

Notes:

Totals may not sum due to rounding. See detailed calculations in Appendix A.

scf—standard cubic feet

g—grams

MMBtu—million British thermal units

- (1) A direct CO₂ emission factor of 117 lb/MMBtu for natural gas consumption within the existing units taken from a published emission factor (EIA).
- (2) Direct emission factors for natural gas consumption and end use combustion of the vaporized LNG taken from EPA Emission Factors for Greenhouse Gas Inventories for stationary combustion (https://www.apa.gov/aitag/files/2020_04/decumenta/aba.gov/aitag/fil
- (<u>https://www.epa.gov/sites/production/files/2020-04/documents/ghg-emission-factors-hub.pdf</u>).
- (3) Upstream emission factors for natural gas and diesel fuel specified by NYSDEC, Appendix A of the 2021 Statewide GHG Emission Report. January2022.
- (4) Downstream CH₄ and CO₂ emission factors for transmission of natural gas specified by NYSDEC, Appendix A of the 2021 Statewide GHG Emission Report. January2022.
- (5) No direct emissions are associated with the natural gas for LNG storage at the Facility. However, the assessment includes the upstream emissions associated with the extraction and transport of natural gas to the Plant for liquefaction and vaporization, downstream emissions associated with transmission of the vaporized LNG from the Plant, and combustion of the vaporized LNG at the end user.

Table 3 Annual GHG PTE Emissions from Combustion Turbine and LNG Usage Future LNG Plant

			E	Emissions			
Туре	Annual Usage	Category	CO ₂	CH₄	N ₂ O	(metric tons CO₂e/year)	
Natural Gas	004 000 050 (Direct ^{(1) (2)}	69,350 g/MMBtu	1.00 g/MMBtu	0.10 g/MMBtu	16,429	
for Combustion	231,882,353 scf	Upstream ⁽³⁾	12,131 g/MMBtu	357 g/MMBtu	0.140 g/MMBtu	9,971	
Turbine				Na	atural Gas Total	26,399	
Natural Gas		Direct (2)	53,060 g/MMBtu	1.00 g/MMBtu	0.10 g/MMBtu	0 (5)	
for LNG		Upstream ⁽³⁾	12,131 g/MMBtu	357 g/MMBtu	0.140 g/MMBtu	42,999	
Liquefaction and Storage	1,000,000,000 scf	Downstream ⁽⁴⁾ (Transmission)	2 g/MMBtu	68 g/MMBtu	N/A	5,828	
		Downstream ⁽²⁾ (End Use)	53,060 g/MMBtu	1.00 g/MMBtu	0.10 g/MMBtu	54,234	
					LNG Total	103,061	
					Plant Total	129,461	
scf—standa g—grams	Notes : Totals may not sum due to rounding. See detailed calculations in Appendix A. scf—standard cubic feet g—grams MMBtu—million British thermal units						
 A direct CO₂ emission factor of 153 lb/MMBtu for natural gas consumption within the proposed combustion turbine taken from manufacturer's data. Direct emission factors for natural gas consumption and end use combustion of the vaporized LNG taken from EPA Emission Factors for Greenhouse Gas Inventories for stationary combustion (https://www.epa.gov/sites/production/files/2020-04/documents/ghg-emission-factors-hub.pdf). 							
(3) Upstrea		s for natural gas	and diesel fuel spe			the 2021	
(4) Downst	ream CH4 and CO	2 emission factor	s for transmission	of natural gas spe	cified by NYSDE	C, Appendix A	
	of the <i>2021 Statewide GHG Emission Report</i> . January 2022. 5) No direct emissions are associated with the natural gas for LNG storage at the Facility. However, the						

(5) No direct emissions are associated with the natural gas for LNG storage at the Facility. However, the assessment includes the upstream emissions associated with the extraction and transport of natural gas to the Plant for liquefaction and vaporization, downstream emissions associated with transmission of the vaporized LNG from the Plant, and combustion of the vaporized LNG at the end user.

Due to the reduced potential on-site natural gas consumption, the Plant's GHG emissions associated with the combustion turbine are estimated to decrease by approximately 42,109 metric tons of CO_2e per year on a PTE basis. Total GHG emissions when combined with the emissions associated with the liquefaction and storage are estimated to be 171,569 metric tons when using the existing combustion turbine and 129,461 metric tons when fully utilizing the proposed combustion turbine.⁷

⁷ Totals may not sum due to rounding. See detailed calculations in Appendix A.

ACTUAL GHG EMISSIONS

The anticipated actual fuel consumption, usage, emission factors, and resulting GHG emissions for the combustion turbine and LNG usage for the existing Plant and in the future with the project are presented in **Tables 4** and **5**, respectively.

Table 4 Annual Actual GHG Emissions from Combustion Turbine and LNG Usage Existing LNG Plant

			E	Emissions			
Туре	Annual Usage	Category	CO ₂	CH₄	N ₂ O	(metric tons CO₂e/year)	
Natural Gas for Combustion	216,903,669 scf	Direct ^{(1) (2)}	53,107 g/MMBtu	1.00 g/MMBtu	0.10 g/MMBtu	11,774	
		Upstream ⁽³⁾	12,131 g/MMBtu	357 g/MMBtu	0.140 g/MMBtu	9,327	
Turbine		21,100					
Natural Gas		Direct (2)	53,060 g/MMBtu	1.00 g/MMBtu	0.10 g/MMBtu	0 (5)	
for LNG Liquefaction and Storage		Upstream ⁽³⁾	12,131 g/MMBtu	357 g/MMBtu	0.140 g/MMBtu	11,506	
		Downstream ⁽⁴⁾ (Transmission)	2 g/MMBtu	68 g/MMBtu	N/A	1,560	
		Downstream ⁽²⁾ (End Use)	53,060 g/MMBtu	1.00 g/MMBtu	0.10 g/MMBtu	14,512	
					LNG Total	27,577	
	48,677						

Notes:

Totals may not sum due to rounding. See detailed calculations in Appendix A.

scf—standard cubic feet

g—grams

MMBtu—million British thermal units

- (1) A direct CO₂ emission factor of 117 lb/MMBtu for natural gas consumption within the existing units taken from a published emission factor (EIA).
- (2) Direct emission factors for natural gas consumption and end use combustion of the vaporized LNG taken from EPA Emission Factors for Greenhouse Gas Inventories for stationary combustion (https://www.epa.gov/sites/production/files/2020-04/documents/ghg-emission-factors-hub.pdf).

 (3) Upstream emission factors for natural gas and diesel fuel specified by NYSDEC, Appendix A of the 2021 Statewide GHG Emission Report. January2022.

(4) Downstream CH₄ and CO₂ emission factors for transmission of natural gas specified by NYSDEC, Appendix A of the 2021 Statewide GHG Emission Report. January2022.

(5) No direct emissions are associated with the natural gas for LNG storage at the Facility. However, the assessment includes the upstream emissions associated with the extraction and transport of natural gas to the Plant for liquefaction and vaporization, downstream emissions associated with transmission of the vaporized LNG from the Plant, and combustion of the vaporized LNG at the end user.

Table 5 Annual Actual GHG Emissions from Combustion Turbine and LNG Usage Future LNG Plant

				Emissions				
Туре	Annual Usage	Category	CO ₂ CH ₄		N ₂ O	(metric tons CO₂e/year)		
Natural Gas for Combustion	155,064,706 scf	Direct ^{(1) (2)}	69,350 g/MMBtu	1.00 g/MMBtu	0.10 g/MMBtu	10,986		
		Upstream ⁽³⁾	12,131 g/MMBtu	357 g/MMBtu	0.140 g/MMBtu	6,668		
Turbine		17,654						
Natural Gas		Direct (2)	53,060 g/MMBtu	1.00 g/MMBtu	0.10 g/MMBtu	0 (5)		
for LNG Liquefaction and Storage	267,576,696 scf	Upstream ⁽³⁾	12,131 g/MMBtu	357 g/MMBtu	0.140 g/MMBtu	11,506		
		Downstream ⁽⁴⁾ (Transmission)	2 g/MMBtu	68 g/MMBtu	N/A	1,560		
		Downstream ⁽²⁾ (End Use)	53,060 g/MMBtu	1.00 g/MMBtu	0.10 g/MMBtu	14,512		
	LNG Total							
					Plant Total	45,231		
scf—standa g—grams	not sum due to rou rd cubic feet lion British therma	-	led calculations in .	Appendix A.				
turbines (2) Direct e EPA En	taken from manu mission factors fon nission Factors for	facturer's data. r natural gas con r Greenhouse Ga	Btu for natural gas sumption and end s Inventories for st /2020-04/documen	use combustion o ationary combusti	f the vaporized LN on			

 (3) Upstream emission factors for natural gas and diesel fuel specified by NYSDEC, Appendix A of the 2021 Statewide GHG Emission Report. January 2022.

(4) Downstream CH₄ and CO₂ emission factors for transmission of natural gas specified by NYSDEC, Appendix A of the 2021 Statewide GHG Emission Report. January 2022.

(5) No direct emissions are associated with the natural gas for LNG storage at the Facility. However, the assessment includes the upstream emissions associated with the extraction and transport of natural gas to the Plant for liquefaction and vaporization, downstream emissions associated with transmission of the vaporized LNG from the Plant, and combustion of the vaporized LNG at the end user.

Due to the reduced on-site natural gas consumption from the proposed project, the GHG emissions from on-site fuel usage are estimated to decrease by approximately 3,447 metric tons of CO_2e per year. Total emissions when combined with the emissions associated with LNG liquefaction, storage and vaporization are estimated to be 48,677 metric tons when using the existing turbine and 45,231 metric tons when utilizing the proposed turbine.⁸

⁸ Totals may not sum due to rounding. See detailed calculations in Appendix A.

E. CO-POLLUTANT EMISSIONS

Similar to GHG emissions, co-pollutant emissions from the proposed project were estimated based on the number of hours of operation for the combustion turbines as well as the maximum potential to emit. The fuel consumption, emission factors, and resulting co-pollutant emissions for the existing turbine and the proposed project are presented in **Tables 6 and 7**, along with the net change in co-pollutants. The decrease in fuel consumption would result in a reduction in annual co-pollutant emissions from the combustion turbines. The co-pollutant emissions calculations are attached to this assessment.

Annual Co-Ponutant PTE Emissio						E Emissions		
		Existing Turbine		Future Turbine				
Pollutant ⁽¹⁾	Emission Factor ⁽²⁾	Usage	Emissions (tons/year)	Usage	Emissions (tons/year)	Net Emissions (tons/year)		
Criteria Pollutants								
Nitrogen Dioxide (3)	272 lb/mmcf		95.64	231,882,353 scf		(83.50)		
Nillogen Dioxide (*	105 lb/mmcf				12.15			
Carbon Monoxide	84 lb/mmcf	704 225 204	29.58		9.74	(19.84)		
Volatile Organic Compounds	5.5 lb/mmcf	704,235,294 scf	1.94		0.64	(1.30)		
Particulate Matter (PM ₁₀)	7.6 lb/mmcf	501	2.68		0.88	(1.79)		
Particulate Matter (PM _{2.5})	7.6 lb/mmcf		2.68		0.88	(1.79)		
Sulfur Dioxide	0.6 lb/mmcf		0.21		0.07	(0.14)		
Hazardous Air Pollutants								
Benzene	0.0021 lb/mmcf		7.39E-04	231,882,353 scf	2.43E-04	(4.96E-04)		
Toluene	0.0034 lb/mmcf		1.20E-03		3.94E-04	(8.03E-04)		
Formaldehyde	0.0750 lb/mmcf	704,235,294	2.64E-02		8.70E-03	(1.77E-02)		
Naphthalene	0.0006 lb/mmcf	scf	2.15E-04		7.07E-05	(1.44E-04)		
Hexane	1.8000 lb/mmcf		6.34E-01		2.09E-01	(4.25E-01)		
Total HAPs 0.66 Total HAPs 0.22 (0.44)								

Table 6 Annual Co-Pollutant PTE Emissions

Notes:

Totals may not sum due to rounding. See detailed calculations in Appendix A.

Mmcf—million cubic feet

scf-standard cubic feet

MMBtu—million British thermal units

(1) Note that co-pollutant emissions from other existing sources at the Facility are not included since they would not be affected by the proposed project.

(2) Emission factors for all pollutants other than NO_x taken from AP-42 Tables 1.4-1 through 1.4-3.

(3) NO_x emissions factors for the existing turbine and proposed turbine taken from emission testing data and manufacturer's data, respectively.

	Table 7
Annual Actual	Co-Pollutant Emissions

		Existing Turbine		Future Turbine		
Pollutant ⁽¹⁾	Emission Factor ⁽²⁾	Usage	Emissions (tons/year)	Usage	Emissions (tons/year)	Net Emissions (tons/year)
Criteria Pollutants						
Nitregen Disvide (3)	272 lb/mmcf		29.46	155,064,706 scf		(21.34)
Nitrogen Dioxide ⁽³⁾	105 lb/mmcf				8.12	
Carbon Monoxide	84 lb/mmcf	216 002 660	9.11		6.51	(2.60)
Volatile Organic Compounds	5.5 lb/mmcf	216,903,669 scf	0.60		0.43	(0.17)
Particulate Matter (PM ₁₀)	7.6 lb/mmcf	SCI	0.82		0.59	(0.23)
Particulate Matter (PM _{2.5})	7.6 lb/mmcf		0.82		0.59	(0.23)
Sulfur Dioxide	0.6 lb/mmcf		0.07		0.05	(0.02)
Hazardous Air Pollutant	S					
Benzene	0.0021 lb/mmcf		2.28E-04		1.63E-04	(6.49E-05)
Toluene	0.0034 lb/mmcf	216,903,669 scf	3.69E-04	155,064,706 scf	2.64E-04	(1.05E-04)
Formaldehyde	0.0750 lb/mmcf		8.13E-03		5.81E-03	(2.32E-03)
Naphthalene	0.0006 lb/mmcf		6.62E-05		4.73E-05	(1.89E-05)
Hexane	1.8000 lb/mmcf		1.95E-01		1.40E-01	(5.57E-02)
		Total HAPs	0.20	Total HAPs	0.15	(0.06)

Notes:

Totals may not sum due to rounding. See detailed calculations in Appendix A.

Mmcf—million cubic feet

scf-standard cubic feet

MMBtu-million British thermal units

(1) Note that co-pollutant emissions from other existing sources at the Facility are not included since they would not be affected by the proposed project.

(2) Emission factors for all pollutants other than NOx taken from AP-42 Tables 1.4-1 through 1.4-3.

(3) NO_x emissions factors for the existing turbine and proposed turbine taken from emission testing data and manufacturer's data, respectively.

F. CONCLUSIONS

As explained above, the proposed project would result in a net decrease of both PTE and projected actual emissions from the Plant of approximately 42,109 and 3,447 metric tons of CO2e per year, respectively. These reductions are representative of Con Edison's commitment to reduce its direct carbon emissions. The significant reductions in GHG emissions demonstrate that the proposed modification to the Title V Permit would support the State in achieving its emission reduction goals. Furthermore, since the proposed modification would not expand the capacity of the existing natural gas system, the proposed combustion turbine would only represent an investment to reduce GHG emissions within the State's existing fossil fuel infrastructure. In the future, with increased electrification, it is also anticipated that the new combustion turbine would also run less frequently than what is projected in this CLCPA analysis. Consequently, it is consistent with and will not interfere with the attainment of the statewide greenhouse gas emissions limits in 6 NYCRR Part 496 and is therefore in compliance with Section 7(2) of the CLCPA.

In addition, the proposed project benefits disadvantaged communities through reducing local emissions of co-pollutants and by providing reliable gas service to socioeconomically vulnerable communities, consistent with Section 7(3) of the CLCPA.

Therefore, the proposed project complies with the requirements of the CLCPA.