INTERIM SITE MANAGEMENT PLAN – INDOOR AIR MONITORING REPORT
FORMER EAST 11th STREET WORKS SITE – OU-1
MANHATTAN, NEW YORK
SITE ID NO. 231110

CONSOLIDATED EDISON CO. OF NEW YORK, INC.
31-01 20th Avenue
Long Island City, NY 11105

Prepared by:

Arcadis of New York, Inc.
295 Woodcliff Drive, Suite 301
Fairport, New York 14450

February 2020
INTERIM SITE MANAGEMENT PLAN – INDOOR AIR MONITORING REPORT
Former East 11th Street Works OU-1
Site No. 231110
Manhattan, New York

February 2020
INDOOR AIR MONITORING REPORT

Former East 11th Street Works, Manhattan, NY

Prepared for:
Consolidated Edison Company of New York, Inc.

Prepared by:
Arcadis of New York, Inc.
295 Woodcliff Drive
Third Floor
Suite 301
Fairport
New York 14450
Tel 585 385 0090
Fax 585 385 4198

Our Ref.:
30005328

Date:
February 2020

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.
CONTENTS

Acronyms and Abbreviations... ii
Executive Summary.. iii
1 Indoor Air Monitoring... 1
2 Results and conclusions ... 3
3 Work Plan Deviations.. 5

TABLES

Table 1. Sample Collection Dates ... 1
Table 2. Indoor Air Analytical Results – East Side OU-1

FIGURES

Figure 1. Site Plan with Air Monitoring Locations

APPENDICES

A NYSDOH Indoor Air Quality Questionnaires and Building Inventory Forms
B Photographic Logs – Building Inventories
C Sample Collection Logs
D Data Usability Summary Reports (DUSRs)
E Photographic Logs – Indoor Air Monitoring Locations
ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arcadis</td>
<td>Arcadis of New York, Inc.</td>
</tr>
<tr>
<td>Con Edison</td>
<td>Consolidated Edison Company of New York, Inc.</td>
</tr>
<tr>
<td>DUSR</td>
<td>Data Usability Summary Report</td>
</tr>
<tr>
<td>HASP</td>
<td>Health and Safety Plan</td>
</tr>
<tr>
<td>ISMP</td>
<td>Interim Site Management Plan for Indoor Air Monitoring</td>
</tr>
<tr>
<td>MGP</td>
<td>Manufactured Gas Plant</td>
</tr>
<tr>
<td>NYSDOH</td>
<td>New York State Department of Health</td>
</tr>
<tr>
<td>ppbRAE</td>
<td>portable organic vapor monitor</td>
</tr>
<tr>
<td>USEPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compound</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

This report presents a summary of the results from the October 28 through November 1, 2019 indoor air monitoring conducted by Arcadis of New York, Inc. (Arcadis) at Operable Unit #1 within the site, which includes the Jacob Riis Housing Development on behalf of Consolidated Edison Company of New York, Inc. (Con Edison). Indoor air monitoring was conducted in accordance with the procedures and protocols presented in the Interim Site Management Plan for Indoor Air Monitoring (Arcadis 2009) (ISMP). The ISMP is a component of a monitoring plan in place to ensure that potential exposure to MGP related contaminants by the public and the environment is monitored and controlled until a final remedy for the Former East 11th Street Works Site (the site) is implemented.

A summary of the activities performed associated with the indoor air monitoring is included below. Tabulated laboratory results from the indoor air monitoring, a figure showing the sampling locations, photographic logs, sampling forms, and a compact disk (CD) containing copies of the Data Usability Summary Reports (DUSRs) are included as attachments. Deviations from the scope of work presented in the ISMP are also presented.
1 INDOOR AIR MONITORING

Prior to initiating field work, the site Health and Safety Plan (HASP) was reviewed and updated to ensure that task specific monitoring activities were consistent with Con Edison’s Corporate Health and Safety Procedure A32.00 (Rules We Live By) and the most current guidance documents. A copy of the HASP was maintained on site during all work activities; all site personnel were required to review the HASP and sign an acknowledgement form stating that they understood the contents of the HASP and agreed to abide by its requirements. Tailgate meetings were conducted each morning to discuss the day’s activities, critical work procedures, and safety requirements.

The dates that the annual indoor air sampling events were conducted are presented in Table 1.

Table 1. Sample Collection Dates

<table>
<thead>
<tr>
<th>Location</th>
<th>Sample Collection Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacob Riis Housing Development</td>
<td>October 28 through November 1, 2019</td>
</tr>
<tr>
<td>170 Avenue D, 178 Avenue D, 1115 FDR Drive</td>
<td></td>
</tr>
<tr>
<td>1141 FDR Drive, 1223 FDR Drive</td>
<td></td>
</tr>
</tbody>
</table>

Pre-monitoring walk through visual inspections and chemical inventories were conducted concurrent with indoor air monitoring activities at each of the sampling locations. The objectives of the walk-through inspections and chemical inventories were to visually identify conditions that may affect or interfere with the indoor air monitoring, document the physical condition of the indoor air monitoring areas, and to confirm the sampling locations. Conditions identified during the visual inspections were generally consistent with conditions identified by Arcadis during visual inspections conducted in 2010, 2011, and 2013. Evidence of flooding (e.g., water marks on the exterior foundation walls) was evident on several buildings located closest to the FDR, potentially as a result of Hurricane Sandy, which severely impacted the lower east side of Manhattan in October 2012. Additionally, sewage water was observed in a storage room on the south east side in the building located at 1223 FDR Drive.

During the walk-through inspections, floor construction details for each building were documented and New York State Department of Health (NYSDOH) Indoor Air Quality Questionnaires and Building Inventory Forms were completed (Appendix A). Photographs of the areas where samples were collected to document general background conditions and the chemical products present that potentially contain volatile chemicals during the walkthrough inspections are provided in Appendix B.

The locations selected for indoor monitoring are presented on Figure 1 and are consistent with those shown in the ISMP. The selected locations for each building are the same as the locations sampled during the 2007, 2010, 2011, and 2013 indoor air monitoring events.

As identified in the photographic logs, small quantities of containers containing paints, solvents, cleaning supplies, and/or maintenance-related chemical products were present in each of the buildings during the walk-through inspections. These conditions are also similar to the conditions identified during the walk-through inspections associated with the previous sampling events. Removal of these potential interferences
prior to collection of indoor air samples was not feasible. A portable organic vapor monitor (ppbRAE) was used to measure volatile organic compounds (VOCs) liberated from these contemporary chemicals. The measured concentrations of VOCs in each area monitored in each building were 0 parts per billion. Photographic logs documenting the conditions/stored products at these locations are included as Appendix E.

Air samples for laboratory testing were collected using batch-certified clean, 6-liter SUMMA canisters equipped with laboratory pre-set flow regulators for 8-hour sample collection. Indoor air samples were collected from within the ground levels of each building within the breathing zone (approximately 3 to 4 feet above the floor). The date, times (start and end times), sample identification, and other required information were recorded on sample collection logs as described in the ISMP. The sample collection logs are included as Appendix C. Outdoor, ambient air monitoring was conducted from upwind locations each day indoor air samples were collected. Ambient air sampling locations are also presented on Figure 1.

Air samples were sent to TestAmerica Laboratories located in Knoxville, Tennessee via overnight courier for analysis of the project compound list analytes by United States Environmental Protection Agency (USEPA) Method TO-15. The project compound list included standard TO-15 VOCs, along with additional analyses for n-alkanes, branched alkanes, and other “indicator” compounds (the branched alkanes and other “indicator” compounds were reported as tentatively identified compounds). The laboratory provided ASP Category B-equivalent data packages for quality review. Laboratory data packages and associated quality control information were reviewed by qualified Arcadis personnel to verify they met the project-specific criteria for data quality. DUSRs were prepared that present the results from the data review for each sample data group; DUSRs are included as Appendix D. The DUSRs indicate that the laboratory results for each site met the data quality objectives and the data were considered usable.

The laboratory results for the East 11th Street OU-1 site are summarized in Table 2. Consistent with ISMP requirements, for comparison purposes, the indoor air results are compared to the NYSDOH’s FINAL Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006 with 2017 amendment), Upper Fence (F) Criterion for indoor air background data for fuel oil heated homes and the USEPA’s 2001 Building Assessment Survey and Evaluation (BASE) Study guidance values for the 90th percentile background air levels to provide typical concentrations of VOCs in indoor air. These studies have been conducted, both nationally and in the State of New York, to provide information on indoor and outdoor air background levels in a variety of settings (e.g., residential or commercial buildings). Per NYSDOH guidance, the Upper F values from the NYSDOH Fuel Oil Study data may be used as initial benchmarks when evaluating residential indoor air, and the 90th percentile values from the EPA BASE data for indoor air in office and commercial buildings.
2 RESULTS AND CONCLUSIONS

Eighteen (18) indoor air samples (labeled based on building address), 4 ambient samples (AA-102919, AA-103019, AA103119, and AA-110119), and 2 duplicate samples for quality control purposes (DUP-103119 and DUP-110119) were collected for laboratory analysis. The sample collection logs are included on a CD as Appendix C; photographs documenting the sample locations and equipment set-up are included on a CD as Appendix E. The laboratory results are presented in Table 2.

The ISMP included the collection of five air samples from elevator shafts within the site buildings (one sample from an elevator shaft within each building sampled); however, based upon inspection with Con Edison prior to the 2010 monitoring event, the elevator shafts were unable to be accessed safely for visual inspection and sample collection without terminating elevator operation. Terminating elevator operation was not feasible; therefore, consistent with the previous monitoring events, elevator shaft samples were not be collected.

As indicated in Table 2, a total of 40 VOC analytes included in the TO-15 analyses (including analytes qualified as estimated because their value was less than the minimum calibration level but greater than the estimated detection limit) were detected in the 18 indoor air samples collected throughout the site. This is consistent with previous indoor air sampling results. A summary of the detected analytes include:

- Of the 40 TO-15 VOCs detected in indoor air, 30 were also detected in ambient (i.e., outdoor) air. The 10 analytes detected in indoor air that were not detected in outdoor ambient air included 8 chlorinated compounds (various compounds in multiple sample locations), bromomethane (5 sample locations), and naphthalene (6 sample locations).

- When compared to the concentrations detected in the ambient air samples, 25 of the 40 TO-15 VOCs were detected in indoor samples at concentrations similar to or greater than the outdoor concentrations. The TO-15 VOCs detected at higher concentrations indoors included 19 chlorinated compounds.

- Ten (10) of the TO-15 VOC analytes detected in indoor air samples were above the NYSDOH Upper F criterion: 1,2,4-trimethylbenzene (1 location), 1,3,5-trimethylbenzene (1 location), 1,4-dichlorobenzene (7 locations), 2-butanone (1 location), 2-methyl-2-pentanone (1 location), chloromethane (1 location), chloroform (15 locations), methylene chloride (3 locations), naphthalene (1 location), tetrachloroethene (1 location). Four of those analytes were also present above the USEPA indoor air background level (1,2,4-trimethylbenzene (1 sample) chloroform [5 samples], methylene chloride (2 locations), and naphthalene (1 location).

- Commonly identified “fuel oil or petroleum products indicators” (e.g., n-butane, n-pentane, n-heptane, isoctane, isopentane and 2-methylpentane) that were included in the n-alkanes and branched alkanes analyte lists were identified in all outdoor ambient air samples and indoor air samples. Each of these “indicator” analytes was detected in multiple indoor air samples at concentrations higher than detected in the ambient air samples.

- Indene and thiopene were not detected in any of the samples collected; these compounds are commonly used as “Manufactured Gas Plant (MGP) indicators”.

- Chloroform was detected in each of the indoor and outdoor samples collected for analysis, and was present at concentrations above both the NYSDOH Upper F and USEPA BASE 90th percentile values
in all but two of the indoor air samples. Chloroform is a man-made by-product used in industrial processes and as a solvent for lacquers, floor polishes, resins, and adhesives, and; therefore, not related to MGP operations.

- Other TO-15 VOC compounds that were reported in indoor air above both the NYSDOH Upper F and USEPA BASE 90th percentile values at multiple locations (i.e., two or more locations) included 1,4-dichlorobenzene, 4-methyl-2-pentanone, and methylene chloride. 1,4-dichlorobenzene is commonly used as in insecticides, fungicides, and pesticides, while 4-methyl-2-pentanone and methylene chloride are widely used as solvents for gums, resins, paints, varnishes, and lacquers.

Where analyzed, helium, used as a tracer gas, was not detected in any of the indoor air or ambient air samples. This indicates that no leaks, short-circuiting, or cross-contamination in the sampling equipment/procedures were present.

Based on the types of analytes detected, as well as the solvents, cleaning supplies, petroleum, oils, and maintenance-related chemical products stored within the ground-level areas/basements, and coupled with the absence of MGP indicator compounds, the data suggests that MGP-related impacts do not exist in the building areas monitored within the site.
3 WORK PLAN DEVIATIONS

The following deviations from the scope of work presented in the ISMP occurred during the field activities:

- Consistent with previous ISMP sampling events, due to the limitations of site access, the pre-monitoring walk through inspections and chemical inventories at each building were conducted concurrent with indoor air monitoring activities.

- Consistent with the previous ISMP sampling events, the elevator shafts were unable to be accessed for walk-through inspections and monitoring due to the inability to safely access the shafts without terminating elevator operation. Terminating elevator operation was not feasible; therefore the samples could not be collected.

- Haven Plaza North Co-Op Apartments and Saint Emeric’s (including the Escuela Hispania Montessori Head Start School and the Church of Saint Emeric’s) were not inspected and sampled at this time due to lack of access.

- The laboratory did not analyze for helium at 10 of the 22 sampling locations. The SUMMA canisters had already been purged by the laboratory when the analytical results were provided to Arcadis; therefore, the laboratory could not go back and re-analyze for helium.

No additional deviations from the scope of work presented in the ISMP were noted.
TABLES
<table>
<thead>
<tr>
<th>Location Code</th>
<th>NYSDOH Fuel Type</th>
<th>Upper Fence</th>
<th>90th Percentile</th>
<th>0.65 U</th>
<th>0.32 U</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1-Dichloroethene</td>
<td>0.2</td>
<td>20.4</td>
<td>ug/m³</td>
<td>1.2</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>0.39</td>
<td>0.7</td>
<td>ug/m³</td>
<td>0.2</td>
</tr>
<tr>
<td>Methane</td>
<td>0.4</td>
<td>1.4</td>
<td>ug/m³</td>
<td>0.2</td>
</tr>
<tr>
<td>1-Dichloroethane</td>
<td>0.4</td>
<td>1.4</td>
<td>ug/m³</td>
<td>0.2</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>6.3</td>
<td>-</td>
<td>ug/m³</td>
<td>0.3</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>0.35</td>
<td>-</td>
<td>ug/m³</td>
<td>0.2</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>0.4</td>
<td>1.4</td>
<td>ug/m³</td>
<td>0.2</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>0.38</td>
<td>-</td>
<td>ug/m³</td>
<td>0.3</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>0.38</td>
<td>-</td>
<td>ug/m³</td>
<td>0.3</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>0.38</td>
<td>0.7</td>
<td>ug/m³</td>
<td>0.2</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>2.5</td>
<td>20.6</td>
<td>ug/m³</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Table 2: Indoor Air Analytical Results - East 11th Street 001
<table>
<thead>
<tr>
<th>Date Collected</th>
<th>Units</th>
<th>NYSDOH Fuel Oil Heat - Indoor Air</th>
<th>NYSDOH Fuel Oil Heat - Indoor Air Upper Fence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indoor Air Analytical Results - East 11th Street OU-1</td>
<td>USEPA BASE Guidance Values With Percentile</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location ID:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA-102919</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA-103019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA-103119</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA-110119</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-1115-IA-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-1115-IA-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-1115-IA-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-1115-IA-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-1141-IA-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-1141-IA-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-1141-IA-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-1141-IA-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-1170-IA-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-1170-IA-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-1170-IA-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-1170-IA-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-1178-IA-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-1178-IA-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-1178-IA-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-1178-IA-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-1223-IA-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-1223-IA-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-1223-IA-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-1223-IA-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-170-IA-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-170-IA-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-170-IA-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-170-IA-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-178-IA-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-178-IA-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-178-IA-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-178-IA-4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Date Collected</th>
<th>Units</th>
<th>Indoor Air Analytical Results - East 11th Street OU-1</th>
<th>USEPA BASE Guidance Values With Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Upper Fence</td>
<td>90th Percentile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n-Butane</td>
<td>6.5 5.6 4.2 5.5 46 22 24 7.7 17 36 15 26 12 18 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pentane</td>
<td>1.8 1.4 1.1 1.3 2.9 1.5 2.2 1.6 2.5 2.2 2.5 2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n-Decane</td>
<td>15 17.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n-Dodecane</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n-Heptane</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n-Hexane</td>
<td>14 10.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n-Octane</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nonane</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n-Undecane</td>
<td>12 22.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,3-Dimethylpentane</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isopentane</td>
<td>3.3 2.7 2.1 2.6 4.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-Methylpentane</td>
<td>0.96 0.59 0.49 0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indane</td>
<td>0.39 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indene</td>
<td>0.76 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isoctane</td>
<td>0.68 J 0.44 J 0.44 J</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thiopene</td>
<td>0.28 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,2,3-Trimethylbenzene</td>
<td>0.39 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isopropylbenzene</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Helium</td>
<td>0.68 0.71 0.79 0.79 0.79 U</td>
</tr>
</tbody>
</table>

Notes:

- **bold font** indicates analyte exceeded the USEPA’s BASE Guidance Value (90th Percentile).
- **shaded** indicates analyte exceeded its NYSDOH Upper Fence Criterion.
- **[]** indicates analyte exceeded the USEPA’s BASE Guidance Value (90th Percentile).

Indicates analyte exceeded the USEPA’s BASE Guidance Value (90th Percentile).

Indicates analyte exceeded its NYSDOH Upper Fence Criterion.

- **indicates analyte exceeded the USEPA’s BASE Guidance Value (90th Percentile).**
- **Sample required dilution prior to analysis.**
- **Indicates an estimated value. The value is less than the minimum calibration level but greater than the estimated detection limit (EDL).**
- **Indicates the constituent was not detected at the PQL. The value preceding the U indicates the PQL.**
- **Identifies duplicate sample collected for quality control purposes.**
- **Indicates sample exceeded the USEPA’s Upper Fence Criterion.**

01/30/2020 Table 2 - Indoor Air Analytical Results (DEI)

Page 2 of 3
FIGURES
APPENDIX A

NYSDOH Indoor Air Quality Questionnaires and Building Inventory Forms
NEW YORK STATE DEPARTMENT OF HEALTH
INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY
CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer’s Name Albin Radzevic Date/Time Prepared 10/29/2019 9:30 am
Preparer’s Affiliation Arcadis Phone No. 212-365-4651
Purpose of Investigation Indoor Air Sampling

1. OCCUPANT:

Interviewed: Y / N

Last Name: First Name:

Address:

County:

Home Phone: Office Phone:

Number of Occupants/persons at this location Age of Occupants

2. OWNER OR LANDLORD: (Check if same as occupant ___)

Interviewed: Y / N Maintenance Manager

Last Name: First Name:

Address: East 10th St.

County: Manhattan

Home Phone: Office Phone: 212-228-2400

3. BUILDING CHARACTERISTICS

Type of Building: (Circle appropriate response)

Residential School Commercial/Multi-use
Industrial Church Other:

03911807 Appendix A.doc
If the property is residential, type? (Circle appropriate response)

Ranch 2-Family 3-Family
Raised Ranch Split Unit Colonial
Cape Cod Contemporary Mobile Home
Duplex Apartment House Townhouses/Condos
Modular Log Home Other: ________________

If multiple units, how Many? 117 units

If the property is commercial, type?

Business Type(s) N/A

Does it include residences (i.e., multi-use)? Y / N If yes, how many? N/A

Other characteristics:

Number of floors 12 Building age 40 yrs (1949)

Is the building insulated? Y / N How air tight? Tight / Average / Not Tight

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

Airflow between floors

None. No vertical air flow in design. Possible air flow through gaps in piping, compactor room, trash chute, or elevator shaft.

Airflow near source

Fan in the tank room. During testing gaps between the door & frame.

Outdoor air infiltration

Through fan air exchange & doors opening & closing.

Infiltration into air ducts

No air ducts identified on the ground floor.
5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction: wood frame ☐ concrete ☐ stone ☐ brick ☐

b. Basement type: full ☐ crawl space ☐ slab ☐ other _______

c. Basement floor: concrete ☐ dirt ☐ stone ☐ other _______

d. Basement floor: uncovered ☐ covered ☐ covered with _______

e. Concrete floor: unsealed ☐ sealed ☐ sealed with epoxy floor coating

f. Foundation walls: poured block ☐ stone ☐ other _______

g. Foundation walls: unsealed ☐ sealed ☐ sealed with paint

h. The basement is: wet ☐ damp ☐ dry ☐ moldy

i. The basement is: finished ☐ unfinished ☐ partially finished

j. Sump present? ☐ Y ☐ N

k. Water in sump? ☐ Y ☐ N, not applicable

Basement/Lowest level depth below grade: 20 (feet)

Room itself is: above ground

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

Hot air circulation ☐ Heat pump ☐ Steam radiation ☐ Hot water baseboard ☐ Radiant floor ☐ Outdoor wood boiler ☐ Other _______

The primary type of fuel used is:

Natural Gas ☐ Fuel Oil ☐ Kerosene ☐ Electric ☐ Propane ☐ Solar ☐ Wood ☐ Coal

Domestic hot water tank fueled by: Steam

Boiler/furnace located in: Basement ☐ Outdoors ☐ Main Floor ☐ Other Steam Piped in

Air conditioning: Central Air ☐ Window units ☐ Open Windows ☐ None

035911807 Appendix A.doc
Are there air distribution ducts present? Y [N]

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

Building has no supplied air ductwork. Only air supply is in the tank room from a wall fan.

7. OCCUPANCY

Is basement/lowest level occupied? Full-time Occasionally Seldom Almost Never No

Level General Use of Each Floor (e.g., family room, bedroom, laundry, workshop, storage)

Basement Electric room, Tank Room, Composter Room

1st Floor Residential

2nd Floor

3rd Floor

4th Floor

8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

a. Is there an attached garage? Y [N]

b. Does the garage have a separate heating unit? Y / N / NA

c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, ATV, car)? Y / N / NA

Please specify __________________________

d. Has the building ever had a fire? Y / N When? __________________________

e. Is a kerosene or unvented gas space heater present? Y / N Where? __________________________

f. Is there a workshop or hobby/craft area? Y / N Where & Type? __________________________

g. Is there smoking in the building? Y / N How frequently? __________________________

h. Have cleaning products been used recently? Y / N When & Type? __________________________

i. Have cosmetic products been used recently? Y / N When & Type? __________________________
j. Has painting/staining been done in the last 6 months? Y/N Where & When? __________
k. Is there new carpet, drapes or other textiles? Y/N Where & When? __________
l. Have air fresheners been used recently? Y/N When & Type? __________
m. Is there a kitchen exhaust fan? Y/N If yes, where vented? __________
n. Is there a bathroom exhaust fan? Y/N If yes, where vented? __________
o. Is there a clothes dryer? Y/N If yes, is it vented outside? Y/N
p. Has there been a pesticide application? Y/N When & Type? __________

Are there odors in the building? Y/N
If yes, please describe: Cleaning products

Do any of the building occupants use solvents at work? Y/N
(e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, cosmetologist)
If yes, what types of solvents are used? Household cleaners
If yes, are their clothes washed at work? Y/N

Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response)
Yes, use dry-cleaning regularly (weekly)
Yes, use dry-cleaning infrequently (monthly or less) Unknown
Yes, work at a dry-cleaning service

Is there a radon mitigation system for the building/structure? Y/N Date of Installation: N/A
Is the system active or passive? Active/Passive N/A

9. WATER AND SEWAGE

Water Supply: Public Water Drilled Well Driven Well
Sewage Disposal: Public Sewer Septic Tank Leach Field
Dug Well Dry Well Other:

Other:

10. RELOCATION INFORMATION (for oil spill residential emergency)

a. Provide reasons why relocation is recommended: N/A
b. Residents choose to: remain in home relocate to friends/family relocate to hotel/motel
c. Responsibility for costs associated with reimbursement explained? Y/N
d. Relocation package provided and explained to residents? Y/N
11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:
12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

See drawing on pg. 6
13. PRODUCT INVENTORY FORM

Make & Model of field instrument used:

List specific products found in the residence that have the potential to affect indoor air quality.

<table>
<thead>
<tr>
<th>Location</th>
<th>Product Description</th>
<th>Size (units)</th>
<th>Condition*</th>
<th>Chemical Ingredients</th>
<th>Field Instrument Reading (units)</th>
<th>Photo** Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No chemicals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See photo log</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)
** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.
NEW YORK STATE DEPARTMENT OF HEALTH
INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY
CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name: Robert Arnold Date/Time Prepared: 10/30/19 09:00
Preparer's Affiliation: ARCAMS Phone No.: (631) 391-5223
Purpose of Investigation: Indoor Air Sampling

1. OCCUPANT:

Interviewed: Y / N

Last Name: ___________________ First Name: ___________________
Address: _____________________
County: _____________________
Home Phone: ___________ Office Phone: ___________
Number of Occupants/persons at this location: ______ Age of Occupants: ___________________

2. OWNER OR LANDLORD: (Check if same as occupant ___)

Interviewed: Y / N

Last Name: Collymore First Name: Shawn
Address: 454 East 10th Street
County: Manhattan
Home Phone: ___________ Office Phone: 212-228-2406

3. BUILDING CHARACTERISTICS

Type of Building: (Circle appropriate response)

- Residential
- Industrial
- School
- Commercial/Multi-use
- Church
- Other: ___________________
If the property is residential, type? (Circle appropriate response)

<table>
<thead>
<tr>
<th>Ranch</th>
<th>2-Family</th>
<th>3-Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raised</td>
<td>Ranch Split</td>
<td>Level Colonial</td>
</tr>
<tr>
<td>Cape Cod</td>
<td>Contemporary</td>
<td>Mobile Home</td>
</tr>
<tr>
<td>Duplex</td>
<td>Apartment House</td>
<td>Townhouses/Condos</td>
</tr>
<tr>
<td>Modular</td>
<td>Log Home</td>
<td>Other:</td>
</tr>
</tbody>
</table>

If multiple units, how many? 104

If the property is commercial, type?

Business Type(s) NA

Does it include residences (i.e., multi-use)? Y / N If yes, how many? __________

Other characteristics:

Number of floors 13 Building age ~50 yrs

Is the building insulated? Y / N How air tight? Tight / Average / Not Tight

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

Airflow between floors

None: Only from doors or windows. Compressor has air supply.

There are 1 fan-in openings in the basement.

Airflow near source

Fan in tank room. Openings in the storage room for airing.

Outdoor air infiltration

Fan & openings in basement. Open air holes in wall.

Infiltration into air ducts

NA - No air duct in the building observed.
5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction: wood frame concrete stone brick
b. Basement type: full crawl space slab other

c. Basement floor: concrete dirt stone other

d. Basement floor: uncovered covered covered with ____________

e. Concrete floor: unscaled sealed sealed with ____________

f. Foundation walls: poured block - stone other

g. Foundation walls: unscaled sealed sealed with ____________

h. The basement is: wet damp dry moldy

i. The basement is: finished unfinished partially finished

j. Sump present? Y/N [Sump in [] basement room]

k. Water in sump? Y/N/not applicable Could not access tank room

Basement/Lowest level depth below grade: 20 (feet)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)
Earthen floor in crawl space. Concrete floors seem to be free of cracks.

Drains

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

- Hot air circulation
- Space Heaters
- Electric baseboard
- Heater pump
- Stream radiation
- Wood stove
- Radiant floor
- Outdoor wood boiler
- Other ____________

The primary type of fuel used is:

- Natural Gas
- Fuel Oil
- Kerosene
- Electric
- Propane
- Solar
- Wood
- Coal

Domestic hot water tank fueled by: Steam

Boiler/furnace located in: Basement Outdoors Main Floor Other Steam Piped In

Air conditioning: Central Air Window units Open Windows None
Are there air distribution ducts present? Y (N)

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

No duct work present; small vents and fans create air exchange.

7. OCCUPANCY

Is basement/lowest level occupied? Full-time (Occasionally, Seldom, Almost Never)

<table>
<thead>
<tr>
<th>Level</th>
<th>General Use of Each Floor (e.g., family room, bedroom, laundry, workshop, storage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basement</td>
<td>Meter room, compactor room, tool room</td>
</tr>
<tr>
<td>1st Floor</td>
<td>Residences</td>
</tr>
<tr>
<td>2nd Floor</td>
<td>Residences</td>
</tr>
<tr>
<td>3rd Floor</td>
<td>Residences</td>
</tr>
<tr>
<td>4th Floor</td>
<td>Residences</td>
</tr>
</tbody>
</table>

8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

a. Is there an attached garage? Y (N)

b. Does the garage have a separate heating unit? Y / N (NA)

c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car) Y / N (NA) Please specify ___________________________

d. Has the building ever had a fire? Y (N) When? ___________________________

e. Is a kerosene or unvented gas space heater present? Y (N) Where? ___________________________

f. Is there a workshop or hobby/craft area? Y (N) Where & Type? ___________________________

g. Is there smoking in the building? Y (N) How frequently? People still do ___________________________

h. Have cleaning products been used recently? Y / N When & Type? Daily ___________________________

i. Have cosmetic products been used recently? Y / N When & Type? Possibly from residences ___________________________
j. Has painting/staining been done in the last 6 months? Y / N Where & When? ____________
k. Is there new carpet, drapes or other textiles? Y / N Where & When? ____________
l. Have air fresheners been used recently? Y / N When & Type? ____________
m. Is there a kitchen exhaust fan? Y / N If yes, where vented? ____________
n. Is there a bathroom exhaust fan? Y / N If yes, where vented? ____________
o. Is there a clothes dryer? Y / N If yes, is it vented outside? Y / N
p. Has there been a pesticide application? Y / N When & Type? ____________

Are there odors in the building? Y / N
If yes, please describe: ________________

Do any of the building occupants use solvents at work? Y / N
(e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, cosmetologist)
If yes, what types of solvents are used? ________________
If yes, are their clothes washed at work? Y / N

Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response)

Yes, use dry-cleaning regularly (weekly) No
Yes, use dry-cleaning infrequently (monthly or less) Unknown
Yes, work at a dry-cleaning service

Is there a radon mitigation system for the building/structure? Y / N Date of Installation: ____________
Is the system active or passive? Active/Passive

9. WATER AND SEWAGE

Water Supply: ____________________
Sewage Disposal: ____________________

10. RELOCATION INFORMATION (for oil spill residential emergency)

a. Provide reasons why relocation is recommended: ____________________
b. Residents choose to: remain in home relocate to friends/family relocate to hotel/motel
c. Responsibility for costs associated with reimbursement explained? Y / N
d. Relocation package provided and explained to residents? Y / N
11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:

CS = Confined Space
12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.
13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: ___________________________

List specific products found in the residence that have the potential to affect indoor air quality.

<table>
<thead>
<tr>
<th>Location</th>
<th>Product Description</th>
<th>Size (units)</th>
<th>Condition*</th>
<th>Chemical Ingredients</th>
<th>Field Instrument Reading (units)</th>
<th>Photo** Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO CHEMICALS IDENTIFIED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)
** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.
NEW YORK STATE DEPARTMENT OF HEALTH
INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY
CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer’s Name: Dylan Carlett Date/Time Prepared: 10/30/19
Preparer’s Affiliation: Arcadis Phone No.: 631-391-5203
Purpose of Investigation: Indoor Air Sampling

1. OCCUPANT:

Interviewed: Y / N

Last Name: __________________________ First Name: __________________________
Address: ___
County: __________________________
Home Phone: ______________ Office Phone: ______________
Number of Occupants/persons at this location _____ Age of Occupants _______

2. OWNER OR LANDLORD: (Check if same as occupant __)

Interviewed: Y / N

Last Name: Colignore First Name: Shawn
Address: 459 East 10th Street
County: Manhattan
Home Phone: ______________ Office Phone: 212-228-2400

3. BUILDING CHARACTERISTICS

Type of Building: (Circle appropriate response)

Residential School Commercial/Multi-use
Industrial Church Other: __________________________
If the property is residential, type? (Circle appropriate response)

Ranch 2-Family 3-Family
Raised Ranch Split Level Colonial
Cape Cod Contemporary Mobile Home
Duplex Apartment House Townhouses/Condos
Modular Log Home Other: _________________________

If multiple units, how many? _______ 104 ______

If the property is commercial, type?

Business Type(s) ____________________________

Does it include residences (i.e., multi-use)? Y N If yes, how many? 104

Other characteristics:

Number of floors ______ Building age 42

Is the building insulated? Y N

How air tight? Tight / Average / Not Tight

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

Airflow between floors

None - except through gaps in piping or stairwell

Airflow near source

Vents in cabinet room and tank room

Outdoor air infiltration

Fan in tank room for venting

Infiltration into air ducts

No Air Ducts in ground floor

035911807 Appendix A.doc
5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction: wood frame concrete stone brick

b. Basement type: full crawlspace slab other ________

c. Basement floor: concrete dirt stone other ________

d. Basement floor: uncovered covered covered with ________

e. Concrete floor: unsealed sealed sealed with ________

f. Foundation walls: poured block stone other ________

g. Foundation walls: unsealed sealed sealed with ________

h. The basement is: wet damp dry moldy

i. The basement is: finished unfinished partially finished

j. Sump present? Y/N Y

k. Water in sump? Y/N / not applicable

Basement/Lowest level depth below grade: ______ (feet)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

Minor Cracks in ground near wall

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

Hot air circulation Heat pump Hot water baseboard
Space Heaters Steam radiation Radiant floor
Electric baseboard Wood stove Outdoor wood boiler Other ________

The primary type of fuel used is:

- Natural Gas
- Fuel Oil
- Kerosene
- Electric
- Propane
- Solar
- Wood
- Coal

Domestic hot water tank fueled by: Steam

Boiler/furnace located in: Basement Outdoors Main Floor Other Steam piped in

Air conditioning: Central Air Window units Open Windows None
Are there air distribution ducts present? Y (N)

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

N/A - no supplied air to building except for small ventilation vents in wall (basement)

7. OCCUPANCY

Is basement/lowest level occupied? Full-time Occasionally Seldom Almost Never

Level General Use of Each Floor (e.g., family room, bedroom, laundry, workshop, storage)

Basement Compactor room, Tank room, Storage, Tank room

1st Floor Residences

2nd Floor Residences

3rd Floor Residences

4th Floor Residences

8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

a. Is there an attached garage? Y / N

b. Does the garage have a separate heating unit? Y / N / NA

c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)? Y / N / NA Please specify

d. Has the building ever had a fire? Y (N) When?

e. Is a kerosene or unvented gas space heater present? Y (N) Where?

f. Is there a workshop or hobby/craft area? Y (N) Where & Type?

g. Is there smoking in the building? Y (N) How frequently?

h. Have cleaning products been used recently? Y (N) When & Type? Daily

i. Have cosmetic products been used recently? Y (N) When & Type? Not on ground level

0359111807 Appendix A.doc
j. Has painting/staining been done in the last 6 months? Y N Where & When?

k. Is there new carpet, drapes or other textiles? Y N Where & When?

l. Have air fresheners been used recently? Y N When & Type?

m. Is there a kitchen exhaust fan? Y N If yes, where vented?

n. Is there a bathroom exhaust fan? Y N If yes, where vented?

o. Is there a clothes dryer? Y N If yes, is it vented outside? Y / N

p. Has there been a pesticide application? Y N When & Type?

Are there odors in the building? Y N If yes, please describe:

Do any of the building occupants use solvents at work? Y N
(e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, cosmetologist)

If yes, what types of solvents are used?

If yes, are their clothes washed at work? Y N

Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response)

Yes, use dry-cleaning regularly (weekly) No
Yes, use dry-cleaning infrequently (monthly or less) Unknown
Yes, work at a dry-cleaning service

Is there a radon mitigation system for the building/structure? Y / N Date of Installation:

Is the system active or passive? Active/Passive

9. WATER AND SEWAGE

Water Supply: Public Water Drilled Well Driven Well Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Leach Field Dry Well Other:

10. RELOCATION INFORMATION (for oil spill residential emergency)

a. Provide reasons why relocation is recommended:
NA

b. Residents choose to: remain in home relocate to friends/family relocate to hotel/motel

005911807 Appendix A.doc
11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:
12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

See attached figure.
13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: ____________________________

List specific products found in the residence that have the potential to affect indoor air quality.

<table>
<thead>
<tr>
<th>Location</th>
<th>Product Description</th>
<th>Size (units)</th>
<th>Condition*</th>
<th>Chemical Ingredients</th>
<th>Field Instrument Reading (units)</th>
<th>Photo** Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.
NEW YORK STATE DEPARTMENT OF HEALTH
INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY
CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name ___________ Redepagie ______ Date/Time Prepared ____________
Preparer's Affiliation ____________ Arcadis U.S. Inc. ______ Phone No. ____________
Purpose of Investigation ____________ Indoor Air Sampling

1. OCCUPANT:

Interviewed: Y / N

Last Name: ____________ First Name: ____________

Address: ___

County: ___

Home Phone: ____________ Office Phone: ____________

Number of Occupants/persons at this location ______ Age of Occupants ____________

2. OWNER OR LANDLORD: (Check if same as occupant ___)

Interviewed: Y / N

Last Name: Harrison ____________ First Name: Lawrence

Address: 152 Scott St.

County: Washington Barre, PA 16702

Home Phone: ____________ Office Phone: 570329-5786

3. BUILDING CHARACTERISTICS

Type of Building: (Circle appropriate response)

Residential School Commercial/Multi-use
Industrial Church Other: ______________________
Page 2

If the property is residential, type? (Circle appropriate response)

Ranch 2-Family 3-Family
Raised Ranch Split Level Colonial
Cape Cod Contemporary Mobile Home
Duplex Apartment House Townhouses/Condos
Modular Log Home Other: ______________________

If multiple units, how many? \(13 \times 8 = 104 \)

If the property is commercial, type?

Business Type(s) \(\checkmark \)

Does it include residences (i.e., multi-use)? Y / N If yes, how many? ______

Other characteristics:

Number of floors 13 Building age 70 yer

Is the building insulated? Y / N How air tight? Tight / Average / Not Tight

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

Airflow between floors

__

Airflow near source

__

Outdoor air infiltration

__

Infiltration into air ducts

__
5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction: wood frame concrete stone brick
b. Basement type: full crawlspace slab other ________
c. Basement floor: concrete dirt stone other ________
d. Basement floor: uncovered covered covered with concrete

e. Concrete floor: unsealed sealed sealed with __________
f. Foundation walls: poured block stone other ________
g. Foundation walls: unsealed sealed sealed with __________
h. The basement is: wet damp dry moldy
i. The basement is: finished unfinished partially finished
j. Sump present? Y / N
k. Water in sump? Y / N / not applicable

Basement/Lowest level depth below grade: ________ (feet)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

<table>
<thead>
<tr>
<th>Hot air circulation</th>
<th>Heat pump</th>
<th>Steam radiation</th>
<th>Hot water baseboard</th>
<th>Radiant floor</th>
<th>Outdoor wood boiler</th>
<th>Other ________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Heaters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric baseboard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Gas</td>
<td>Fuel Oil</td>
<td>Kerosene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric</td>
<td>Propane</td>
<td>Solar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood</td>
<td>Coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The primary type of fuel used is:

Natural Gas Fuel Oil Kerosene
Electric Propane Solar
Wood Coal

Domestic hot water tank fueled by: Solen

Boiler/furnace located in: Basement Outdoors Main Floor Other ________

Air conditioning: Central Air Window units Open Windows None
Are there air distribution ducts present? Y / N

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

7. OCCUPANCY

Is basement/lowest level occupied? Full-time Occasionally Seldom Almost Never

<table>
<thead>
<tr>
<th>Level</th>
<th>General Use of Each Floor (e.g., familyroom, bedroom, laundry, workshop, storage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basement</td>
<td>Storage</td>
</tr>
<tr>
<td>1st Floor</td>
<td>Residential</td>
</tr>
<tr>
<td>2nd Floor</td>
<td></td>
</tr>
<tr>
<td>3rd Floor</td>
<td></td>
</tr>
<tr>
<td>4th Floor</td>
<td></td>
</tr>
</tbody>
</table>

8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

a. Is there an attached garage? Y / N

b. Does the garage have a separate heating unit? Y / N / NA

c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)? Y / N / NA
 Please specify ____________________________

d. Has the building ever had a fire? Y / N When? __________

e. Is a kerosene or unvented gas space heater present? Y / N Where? __________

f. Is there a workshop or hobby/craft area? Y / N Where & Type? ____________________

g. Is there smoking in the building? Y / N How frequently? outside door

h. Have cleaning products been used recently? Y / N When & Type? ____________________

i. Have cosmetic products been used recently? Y / N When & Type? ____________________
j. Has painting/staining been done in the last 6 months? Y / N Where & When? ____________

k. Is there new carpet, drapes or other textiles? Y / N Where & When? ____________

l. Have air fresheners been used recently? Y / N When & Type? ____________

m. Is there a kitchen exhaust fan? Y / N If yes, where vented? ____________

n. Is there a bathroom exhaust fan? Y / N If yes, where vented? ____________

o. Is there a clothes dryer? Y / N If yes, is it vented outside? Y / N

p. Has there been a pesticide application? Y / N When & Type? ____________

Are there odors in the building? Y / N
If yes, please describe: Cleaning, Liquids, Wet Air, Garbage

Do any of the building occupants use solvents at work? Y / N (e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, cosmetologist)

If yes, what types of solvents are used? Cleaning supplies

If yes, are their clothes washed at work? Y / N

Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response)

Yes, use dry-cleaning regularly (weekly) No
Yes, use dry-cleaning infrequently (monthly or less) Unknown
Yes, work at a dry-cleaning service

Is there a radon mitigation system for the building/structure? Y / N Date of Installation: ____________
Is the system active or passive? Active/Passive

9. WATER AND SEWAGE

Water Supply: Public Water
Sewage Disposal: Public Sewer
Drilled Well Driven Well Dug Well Other: _______
Septic Tank Leach Field Dry Well Other: _______

10. RELOCATION INFORMATION (for oil spill residential emergency)

a. Provide reasons why relocation is recommended: __________________________

b. Residents choose to: remain in home relocate to friends/family relocate to hotel/motel

c. Responsibility for costs associated with reimbursement explained? Y / N

d. Relocation package provided and explained to residents? Y / N
11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement: GROUND FLOOR

First Floor:
12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.
13. PRODUCT INVENTORY FORM

Make & Model of field instrument used:

List specific products found in the residence that have the potential to affect indoor air quality.

<table>
<thead>
<tr>
<th>Location</th>
<th>Product Description</th>
<th>Size (units)</th>
<th>Condition*</th>
<th>Chemical Ingredients</th>
<th>Field Instrument Reading (units)</th>
<th>Photo** Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)
** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.
NEW YORK STATE DEPARTMENT OF HEALTH
INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY
CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer’s Name: Albina Rednagick
Date/Time Prepared: 11/19/20 10:45 am
Preparer’s Affiliation: Acadici U.S., Inc.
Phone No.: 212-365-4651
Purpose of Investigation: Indoor Air Sampling

1. OCCUPANT:

Interviewed: Y / N

Last Name: ________________ First Name: ________________
Address: __________________________
County: ________________
Home Phone: ________________ Office Phone: ________________
Number of Occupants/persons at this location: ______ Age of Occupants: ________________

2. OWNER OR LANDLORD: (Check if same as occupant _____)

Interviewed: Y / N

Last Name: Harrison First Name: Lawrence
Address: 152 Scott Street
County: Wilkins Barre, PA 18702
Home Phone: ________________ Office Phone: 570-328-5781

3. BUILDING CHARACTERISTICS

Type of Building: (Circle appropriate response)

- Residential
- School
- Commercial/Multi-use
- Industrial
- Church
- Other: ________________

035911807 Appendix A.doc
If the property is residential, type? (Circle appropriate response)

- Ranch
- Raised Ranch
- Cape Cod
- Duplex
- Modular
- 2-Family
- Ranch Split
- Contemporary
- Apartment House
- Log Home
- 3-Family
- Level Colonial
- Mobile Home
- Townhouses/Condos
- Other:

If multiple units, how many? 48

If the property is commercial, type?

Business Type(s)

Does it include residences (i.e., multi-use)? Y / N If yes, how many?

Other characteristics:

Number of floors 6
Building age 70 yrs.

Is the building insulated? Y / N

How air tight? Tight / Average / Not Tight

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

Airflow between floors
None.

Airflow near source
Air shafts, openings in the walls, fans, doors & windows

Outdoor air infiltration
Open window, fans, open air shafts in the walls.

Infiltration into air ducts
No air ducts.
5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction: wood frame concrete stone brick

b. Basement type: full crawlspace slab other ________

c. Basement floor: concrete dirt stone other ________

d. Basement floor: uncovered covered covered with ________________

e. Concrete floor: unsealed sealed sealed with ________________

f. Foundation walls: poured block stone other ________

g. Foundation walls: unsealed sealed sealed with ________________

h. The basement is: wet damp dry moldy

i. The basement is: finished unfinished partially finished

j. Sump present? Y / N

k. Water in sump? Y / N / not applicable

Basement/Lowest level depth below grade: _______ (feet)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

90% of floor is covered w/ dirt. All of the dirt floor is potential soil vapor intrusion point/area.

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

- Hot air circulation
- Space Heaters
- Electric baseboard
- Stream radiation
- Wood stove
- Radiant floor
- Outdoor wood boiler
- Other ________

The primary type of fuel used is:

- Natural Gas
- Fuel Oil
- Propane
- Kerosene
- Solar
- Electric
- Coal

Domestic hot water tank fueled by: Steam

Boiler/furnace located in: Basement Outdoors Main Floor Other Separate Building

Air conditioning: Central Air Window units Open Windows None

035911807 Appendix A.doc
Are there air distribution ducts present? Y / N

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

No air return/supply ductwork.

7. OCCUPANCY

Is basement/lowest level occupied? Full-time Occasionally Seldom Almost Never

<table>
<thead>
<tr>
<th>Level</th>
<th>General Use of Each Floor (e.g., familyroom, bedroom, laundry, workshop, storage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basement</td>
<td>Compactor room, Tank room, Electric room, Storage</td>
</tr>
<tr>
<td>1st Floor</td>
<td>Residential</td>
</tr>
<tr>
<td>2nd Floor</td>
<td></td>
</tr>
<tr>
<td>3rd Floor</td>
<td></td>
</tr>
<tr>
<td>4th Floor</td>
<td></td>
</tr>
</tbody>
</table>

8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

a. Is there an attached garage? Y / N

b. Does the garage have a separate heating unit? Y / N NA

c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car) Y / N NA

Please specify__________________________

d. Has the building ever had a fire? Y / N When?__________________________

e. Is a kerosene or unvented gas space heater present? Y / N Where?__________________________

f. Is there a workshop or hobby/craft area? Y / N Where & Type?__________________________

g. Is there smoking in the building? Y / N How frequently?__________________________

h. Have cleaning products been used recently? Y / N When & Type?__________________________

i. Have cosmetic products been used recently? Y / N When & Type?__________________________
j. Has painting/staining been done in the last 6 months? Y/N Where & When?

k. Is there new carpet, drapes or other textiles? Y/N Where & When?

l. Have air fresheners been used recently? Y/N When & Type?

m. Is there a kitchen exhaust fan? Y/N If yes, where vented?

n. Is there a bathroom exhaust fan? Y/N If yes, where vented?

o. Is there a clothes dryer? Y/N If yes, is it vented outside? Y/N

p. Has there been a pesticide application? Y/N When & Type?

Are there odors in the building? Y/N
If yes, please describe: Sewer, Raccoon, Garbage, Musty, All are strong.

Do any of the building occupants use solvents at work? Y/N
(e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, cosmetologist)

If yes, what types of solvents are used? Cleaners

If yes, are their clothes washed at work? Y/N

Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response)
Yes, use dry-cleaning regularly (weekly) No
Yes, use dry-cleaning infrequently (monthly or less) Unknown
Yes, work at a dry-cleaning service

Is there a radon mitigation system for the building/structure? Y/N Date of Installation:
Is the system active or passive? Active/Passive

9. WATER AND SEWAGE
Water Supply: Public Water Drilled Well Driven Well Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Leach Field Dry Well Other:

10. RELOCATION INFORMATION (for oil spill residential emergency)
a. Provide reasons why relocation is recommended:

b. Residents choose to: remain in home relocate to friends/family relocate to hotel/motel

c. Responsibility for costs associated with reimbursement explained? Y/N

d. Relocation package provided and explained to residents? Y/N
11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:
12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.
13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: __________________________

List specific products found in the residence that have the potential to affect indoor air quality.

<table>
<thead>
<tr>
<th>Location</th>
<th>Product Description</th>
<th>Size (units)</th>
<th>Condition*</th>
<th>Chemical Ingredients</th>
<th>Field Instrument Reading (units)</th>
<th>Photo** Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)
** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.